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Abstract—We describe Statistically-sound Knowledge Discovery
Jrom Data (StatKDD), a groundbreaking change of paradigm
that shifts the focus of the KDD pipeline from the (overzealous)
analysis of the available data towards understanding the, partially
unknown, random, Data Generating Process (DGP) that produces
the data. This shift is required by the practice of scientific
research and by many industrial application, where results from
data analysis must capture new knowledge about the DGP, while
avoiding costly false discoveries.

StatKDD considers every result obtained from the data as
a hypothesis, which must pass severe statistical testing under a
strong null model, in order to be considered significant, i.e.,
informative about the DGP.

The challenges to be solved to enable StatKDD, include
(1) developing representative null models and severe tests for
different KDD tasks from different kind of data; (2) considering
multiple hypotheses testing as a necessity, not an afterthought;
(3) offering flexible statistical guarantees, depending on the stage
of the discovery process; and (4) creating algorithms for the
extraction and testing of hypotheses that scale along multiple
axes, including but not limited to the size of the data, and the
number and complexity of the hypotheses.

Index Terms—Graph Mining, Hypothesis Testing, Markov
Chain Monte Carlo Methods, Null Models, Pattern Mining,
Randomized Algorithms

I. INTRODUCTION

The Knowledge Discovery from Data (KDD) (a.k.a. Data
Mining) community has developed, over the years, a corpus
of ingenious methods for many analytics tasks (e.g., from
pattern mining to anomaly detection) on very different data
(from tabular data to graphs, to multi-variate time series),
considering both static and time-evolving datasets. These
approaches find widespread use in companies and in scientific
labs, for applications ranging from logistics to cybersecurity,
to analysis of satellite data, sports analytics, video games, and
genomics research [1-11].

The KDD process (KDD) is an established pipeline in both
research and production environments [12]. The process is
usually described as having three steps [13, Sect. 1.2]: data
collection, preprocessing, and analytical processing, feeding
one into the next, with the output of processing being given to
the analyst. Feedback loops from the last stage to the previous
ones are considered optional. This design has well served the
research community and the practitioners, but we believe that
it fails to capture important aspects that are key to successful
data-driven decision making. Incorporating these aspects is

at the core of our blue sky idea of statistically-sound KDD
(statKDD).

The KDD process, as traditionally presented, does not
explicitly consider the fact that the goal of the discovery is
not to better understand the available data, but rather to gain
knowledge of the process generating the data. This idea should
be evident when considering how scientific research works
in, e.g., physics: the goal of performing an experiment to
produce data, and then analyzing this data, is not to understand
the data in itself, but rather to understand some partially
unknown mechanism or aspect of the physical world, whose
behavior or law is captured in the data. Understanding the data
is therefore a mean to the end of gaining knowledge about
the mechanism that generated the collected data, i.e., about
the Data Generating Process (DGP). Thus, in the statKDD
pipeline (Fig. 1), the DGP comes as the first component, and
it creates the observed dataset (second component) which is a
noisy, partial, random representation of the DGP. Knowledge
of the DGP must be extracted from the dataset while taking
into account the randomness intrinsic in the DGP.

A second aspect that must be considered is the fact that no
data analysis happens in a void: the observed dataset does not
get dropped from the sky to the analyst, who is unaware of
how it was collected and/or of what it may represent. Rather,
there exists existing or assumed knowledge about the DGP,
which drives the analysis. The purpose of the analysis must
therefore not just to extract knowledge about the DGP, but
to gain new knowledge, “new” being the key aspect. The
existing knowledge must therefore taken into account during
the analysis process, which is done by defining a null model,
which is essentially a mathematical formalization of what is
currently known, or assumed, about the DGP (a more formal
definition of null model is given in later sections).

The observed dataset and the null model inform the suc-
cessive steps of data preprocessing and analytical processing,
which are almost the same as in the KDD process. The output
of analytical processing is composed of patterns, anomalies,
clusters, graph/edge/vertex properties, and is considered the
final result of the KDD pipeline. In statKDD, instead, these
extracted quantities are considered as hypotheses: intermediate
results that must undergo a rigorous statistical assessment
performed with the established tools of statistical hypothesis
testing [14]. Thus, analytical processing is only a “hypothesis
generation stage”, followed (logically, but not necessarily
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Fig. 1. The StatKDD process. [talics labels denote to components/steps not present in the classic KDD process. Solid connectors (vs. dashed ones) are not

present in the classic KDD process.

temporarily, as they may happen concurrently) by statistical
validation with respect to the null model: the goal of this
assessment is to mark as (statistically) significant those hy-
pothesis for which there is sufficient evidence, in the observed
dataset, that they present new knowledge about the DGP, and
to discard the others as due to the randomness of the DGP or
not offering new information about it. The statistical validation
ensures that the output of the statkDD process has statistical
guarantees in a formal sense, therefore solving an important
limitation of the existing KDD approach, where results can
only be seen as giving information about the observed dataset,
rather than about the DGP.

The final, but fundamental difference between statKDD
and traditional KDD is the necessity of a feedback loop
incorporate the new knowledge about the DGP into the null
model, to ensure that future “executions” of the loop will
only extract further new knowledge. Such refinement of the
null model allows each iteration of the statKDD process to
be informative, avoiding time spent in filtering out obvious
or known results about the DGP. It is, again, perfectly in
line with the practice of scientific research: when performing
an experiment and analyzing the obtained data, a physicist
is certainly not interested in having to filter out results that
confirm Newton’s law of gravitation or Galileo’s isochronism
of the pendulum.

We are not the first one to remark the limitations of the
traditional KDD process [15], but there has been very limited
work on addressing this issue, so far. In the following sections,
we outline the challenges to be solved, and we present possible
directions to tackle them.

II. CHALLENGES

The following challenges must be addressed to make
statKDD possible. They offer a great opportunity for re-
searchers in different areas, and with either theoretical and/or
empirical emphasis, to make a lasting impact.

1. Severe testing: It must be hard for hypotheses to be
deemed significant, i.e., the statistical assessment must be
severe [16]. The significance of hypotheses is assessed with re-
spect to a null model, i.e., a collection of possible datasets that
the (partially) unknown GDP may generate, and a probability
distribution over this collection. The null model captures the
assumed or existing knowledge about the DGP: the hypotheses
are assessed against it to understand whether they can be
explained by the existing knowledge or assumptions. The
choice of the null model by the user must be deliberate and
informed, as the meaning of “statistically significant” depends
on the null model. While “all models are wrong, but some
are useful” (George E.P. Box), some null models may be
more appropriate for testing the significance of the results of
a KDD task than others, because they more closely represent
the settings of the task. Severe testing requires representative
null models, thus the first challenge involves clearly analyzing
the requirements and settings of data analytics task, gathering
the existing knowledge about the DGP, and expressing this
combined information about the DGP and the task through (/)
constraints to the collection of datasets that can be generated,
and (2) appropriate choices for the probability distribution
over this collection. Additionally, severe testing requires that
the quantities used to perform the tests, i.e., the test statistics
or the (empirical) p-values associated to each hypothesis, are
conservative, to avoid wrongly marking such hypotheses as
significant: i.e., we consider more acceptable the risk (but we
still aim to minimize it) of not marking a true hypothesis as
significant, rather than the risk of making a false discovery.

2. Testing multiple hypotheses: The output of most KDD
tasks is composed by a large number of quantities (e.g., all
the interesting patterns, a score for each vertex in a graph, all
the anomalies). Additionally, and key for statKDD methods
to find use, the practice of science today requires testing
multiple hypotheses: scientists do not come up with a single
promising hypothesis to be tested on a well-crafted experiment
that produces “perfect” data. A family H of hypotheses is
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Fig. 2. The discovery funnel / still, with the stages of hypothesis testing,
which act as filters for false discoveries, and the measures for false discovery
control. Figure from [17].

considered, which may contain one hypothesis that may ex-
plain the phenomenon under study. For example, no molecular
biologist would ever test the single hypothesis that one specific
combination of gene mutations is much more often present
in individuals with some disease than in healthy individuals.
They would instead ask whether any combination of gene
mutations is significantly more frequent among individuals
with the disease than healthy individuals, thus testing one
hypothesis per combination of mutations. The process of
scientific research is then akin to a multi-stage distillation
process, or to a funnel with intermediate filters (Fig. 2): the
entire family H of hypotheses is “poured” into the funnel,
and the intermediate filters, which represent different stages
of hypothesis testing (discussed below), prevent unpromising
hypotheses, i.e., those deemed to be non-significant on the
observed dataset, from proceeding further. Any hypothesis that
“drips” out of the funnel is a discovery. At each filtering
stage, hypotheses are fested simultaneously on the same data,
highlighting the need for a multiple-hypothesis first approach
to testing, rather than as an afterthought.

3. Offering flexible statistical guarantees: Passing a sin-
gle, even severe test is not sufficient to declare a discov-
ery [16]: it only gives preliminary evidence that the hypothesis
is worth further investigation. Thus, multiple stages of hypoth-
esis testing are necessary. There are two competing goals in
designing the different stages: (1) minimizing false discoveries,
i.e., hypothesis that are false, but appear significant on the
observed dataset due to the randomness in the GDP and in
the testing procedures; and (2) maximizing statistical power,
i.e., the probability to mark a true hypothesis as significant.
It is extremely easy to avoid any false discovery (resp. to
ensure all true hypotheses are marked as significant): one just
has to avoid marking any hypothesis as significant (resp. has
to mark all hypotheses as significant), but such a procedure
would incur in zero statistical power (resp. would maximize

the number of false discovery). There is a trade-off space to
be explored in order to balance these two goals, and the trade-
off point may depend on “how deep into the funnel” (Fig. 2)
we are: in earlier stages, tilting towards increased statistical
power is likely the right choice, while at the later stages,
and definitively at the last one, it is imperative to minimize
the probability of false discoveries, as we are in a now-or-
never situation. Many measures to quantify the control on
false discovery are presented in the statistics literature, e.g.,
the Family-Wise Error Rate (FWER) [18], the False Discovery
Rate (FDR) [19], and the marginalized FDR (mFDR) [20].
Achieving a desired level of statistical power is often harder,
and is usually done after ensuring that false discoveries are
controlled as desired. StatKDD methods must offer flexible
guarantees by controlling these measures, in order to be
applicable at every stage of the discovery process.

4. Scaling along multiple axes: The data mining re-
search community (and, more generally, the computer science
research community) has long considered scalability with
respect to input (i.e., dataset) size central to its work. But
there are other axes along which statKDD methods must scale
well, such as the number and complexity of the hypothe-
ses to be tested.For example, the Human Protein Reference
Database [21] protein-protein interaction network has ~ 19000
proteins and ~ 37000 interactions between them, and scientists
are interested in understanding the significance of relatively
small connected subgraphs in this network, representing path-
ways in cancer cells. There are more than 10'® subgraphs of
size 8, each corresponding to an hypothesis. It is imperative
that statistically-sound KDD methods can extract such a large
number of patterns and test the corresponding hypotheses
as fast as possible. In addition to computational scalability,
statKDD algorithms must offer statistical scalability, i.e.,
perform well w.r.t. the statistical properties of false discovery
control and statistical power. Figure 2 shows how hypotheses
that arrive at each filtering stage must be fested simultaneously
on the same data. Most procedures for multiple hypotheses
testing consider each hypothesis in isolation, which incurs in
computational and statistical “slowdowns”: they unnecessarily
repeat parts of the computation for each hypothesis, which
limits the scalability and throughput of the filter stage, and by
testing each hypothesis individually, they fail to leverage the
structure (broadly defined) of the family of hypotheses under
test, which leads to lower statistical power, thus fewer discov-
eries. StatKDD algorithms should leverage this structure, to
scale well along computational and statistical axes.

III. DIRECTIONS

Previous work towards taking into consideration the DGP
show promise [22, 23], but mostly failed to tackle the chal-
lenges: it only considers simple null models, and performed
tests using approximate test statistics or empirical p-values that
are not necessarily conservative; in terms of false discovery
guarantees, it mostly focused on controlling the FWER, which,
as we discussed, is really only desirable at the later stages of
the discovery process, and is excessively stringent otherwise;



it was rarely scalable, relying on Markov-Chain Monte-Carlo
(MCMC) methods whose mixing time is not well studied.
Finally, previous approaches were mostly designed for simple
data and tasks (although, we admin, extremely important ones)
such as binary transactional datasets for itemset mining, or
static graphs. We propose, to the research community, the
following directions to solve the challenges outlined in Sect. II.

e Propose realistic null models for different KDD tasks
(1% challenge), informed by the needs of practitioners
from different fields [24]. Good places to start are well-
established tasks: various forms of pattern mining [25—
28], edge/vertex centrality measures [29-31], and graph
structural properties such as subgraph counts, core de-
composition, and clustering coefficients [32]. Another
promising task is the statistically-sound identification of
anomalies, e.g., in network traffic, where anomalies may
correspond to security breaches or attacks. Additionally,
it is important to prove impossibility results showing that
imposing specific constraints in the null model may lead
to necessarily-inefficient testing procedures, or at least to
some testing procedures being inefficient [33]: this kind
of results would allow to understand the limitations of
current approaches, and create interesting challenges that
designers of novel methods would need to overcome.

o Derive simultaneous confidence intervals for p-values, to
ensure that the quantities used for testing are conservative
(1% challenge), so the control of false discovery is at
the user-specified level even at finite sample sizes, not
just asymptotically. A starting point could be the use of
uniform convergence results from statistical learning the-
ory, such as those based on variance-aware Rademacher
Averages [34-36], which could obtain tight confidence
intervals with little impact on statistical power.

o Design methods to directly test multiple hypotheses (2™
challenge), rather than considering the presence of mul-
tiple hypotheses as an afterthought. We strongly suggest
embracing the resampling-based approach to hypothesis
testing [37], which by design should allow to offer the
desired flexible guarantees (3 challenge), i.e., control-
ling, as desired, the FWER or the (m)FDR [38-40], by
approximating the distribution of the p-values. Resam-
pling methods also take into account the structure of the
hypothesis family, which leads to good scalability with
the family’s size and complexity (4™ challenge).

o Develop efficient sampling procedures to quickly gen-
erate datasets from the null model, as required by
the resampling-based approach. Depending on the null
model, these algorithms could be fast-mixing MCMC
methods [32, 41] and exact-sampling approaches [42],
that scale well along multiple axes (4" challenge).

e Subject the methods to a thorough empirical evaluation
(5™ challenge) by assessing their scalability along both
computational and statistical axes (4" challenge). To help
thorough evaluation of statistically-sound KDD methods
beyond this project, we suggest the development of artifi-

cial dataset generators which allow the KDD researchers
to plant true hypotheses in the generated data, so as to
evaluate the tightness in the control of false discoveries
and in the statistical power. The empirical evaluation
should also include existing algorithms for established
null models. For example, there are many algorithms
available for uniformly sampling binary matrices with
fixed row and column margins, but their relative perfor-
mance as the size and density of the matrix changes are
not clear.

IV. CONCLUSION

The move to statKDD from traditional KDD is motivated
by the fact that abundance of data, a given fact in essentially
every area of human activity, is always accompanied by a
proliferation of questions whose answers should be found in
such data. But the real the real questions, are about the Data
Generation Process, not about the collected data, thus results
obtained from the data without considering the DGP are not
sufficient. When the answers are used to inform decisions
that may impact large fractions of the population, e.g., for
policymaking or to develop drugs, false discoveries are too
costly to be allowed. Like Zimmermann [15] and others before
us, we call the research community to action, but unlike them,
we propose, if not a plan, a set of challenges to be solved, both
computational and statistical, and some directions for how to
solve these challenges. Methods that solve these challenges
will have a large impact, enabling a faster, higher-throughout
pipeline for scientific discoveries, and better use of data by
companies and governments.
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