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Abstract We introduce CaDET, an algorithm for parametric Conditional Density
Estimation (CDE) based on decision trees and random forests. CaDET uses the
empirical cross entropy impurity criterion for tree growth, which incentivizes splits
that improve predictive accuracy more than the regression criteria or estimated
mean-integrated-square-error used in previous works. CaDET also admits more
efficient training and query procedures than existing tree-based CDE approaches,
and stores only a bounded amount of information at each tree leaf, by using
sufficient statistics for all computations. Previous tree-based CDE techniques
produce complicated uninterpretable distribution objects, whereas CaDET may
be instantiated with easily interpretable distribution families, making every part
of the model easy to understand. Our experimental evaluation on real datasets
shows that CaDET usually learns more accurate, smaller, and more interpretable
models, and is less prone to overfitting than existing tree-based CDE approaches.

Keywords Parametric models · Random forests · Sufficient statistics

“When I became a cadet, I immediately decided I wanted to be an undercover cop
because I don’t like uniforms.” — Ron Stallworth

1 Introduction

Conditional Density Estimation (CDE) is a fundamental statistical task. Given
a domain X , a codomain Y, and a joint Probability Density Function1 (PDF)
ρ(·, ·) over X × Y, the CDE task is to estimate, for each x ∈ X , the Conditional
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(probability) Density Function ρ(·|x). CDE estimators are inductively learned from
a training set Z, which is a collection of n pairs (x, y) ∈ X × Y drawn i.i.d. from
the distribution arising from ρ(·, ·).

Classical regression estimates only the conditional expectation E[y|x], whereas
CDE estimates the conditional distribution of y given x. Depending on the applica-
tion, conditional density estimates can be used as-is, or their quantiles, moments,
and other statistics can be computed, making CDE more flexible than regression.
Regressors often assume homoskedasticity, while CDE methods handle heteroskedas-
ticity, and can thus describe complicated phenomena like skew or multimodality.
CDE can be also used when regression is meaningless, e.g., when conditional
densities exhibit heavy tailed power-law distributions with undefined expectation.

We focus our attention on interpretable CDE, where the task is to train an
accurate CDE model such that both the model and its estimates are easy to
understand by a human analyst. Interpretability is difficult to quantify, but in our
context, having small representation size and low query complexity is a necessary
condition, and a reasonable proxy for interpretability, as the analyst should be able
to conceptualize or visualize the entire model, and mentally follow the process by
which queries are answered. Decision trees and random forests naturally satisfy
these requisites. It is also necessary that density estimates are interpretable, as
understanding the model and query process is only beneficial if the analyst can also
understand the actual predictions. Simple parametric distributions are interpretable
at a glance, but large mixture models, non-parametric estimates, and complex
graphical models, while computationally convenient, are largely uninterpretable.

Existing tree-based2 CDE techniques learn uninterpretable models, and often
select splits that do not yield even local improvements to CDE accuracy. These
techniques must store all training labels associated with each leaf in order to answer
queries, yielding high storage costs and query time complexities. Probabilistic
graphical models with tree structure address some of these issues, and bear some
resemblance to decision trees, but inference on them is far more complicated, and
the learned models are less interpretable to the human analyst.

Contributions We present CaDET, a CDE algorithm based on decision trees and
random forests that overcomes the above limitations of existing tree-based CDE
approaches, and produces interpretable parametric conditional density estimates.

– CaDET trees are standard decision trees that use parametric distributions
stored at the leaves to answer conditional density queries. While parametric
CDE methods are less expressive than non-parametric methods, they usually
require less training data, better leverage domain knowledge, and are more
interpretable, as they store fewer parameters and produce simpler estimates.

– CaDET trees use the empirical cross-entropy impurity criterion for tree growth,
which directly incentivizes splits that lead to more accurate estimates than the
criteria used by existing tree-based CDE techniques. We show that CaDET gen-
eralizes information-gain classification trees and mean-square-error-minimizing
regression trees to a broad family of parametric CDE estimators.

– CaDET is the first tree-based CDE technique that can answer queries without
requiring complex graphical model operations or iterating over stored training

2 We use “tree-based” to describe both decision-tree- and random-tree-based techniques.
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labels. Instead, each leaf stores a fixed-size sufficient statistic for the labels
of training points mapped to it, which allows CaDET to perform Maximum
Likelihood Estimation (MLE) as though it had access to the training labels.

– By selecting parametric families with appropriate support, CaDET can handle
both univariate and multivariate CDE, as well as CDE on more exotic spaces,
such as directional spaces, probability simplices, and mixed spaces, whereas
non-parametric methods are generally restricted to particular domain types.

– Our experimental evaluation on real datasets shows that CaDET produces
models that are generally more accurate, less prone to overfitting, and are more
interpretable than existing tree-based CDE techniques.

Outline The paper is organized as follows. An introduction to decision trees and
random forests is given in Sect. 2. We discuss related work in Sect. 3. CaDET,
is presented in Sect. 4, followed by extensions to the basic algorithm in Sect. 5.
We present our experimental comparison of CaDET to existing tree-based CDE
techniques in Sect. 6. Some conclusions complete the work in Sect. 7.

2 Decision trees and random forests

We now define the key concepts about decision trees and random forests. Our
description of these data structures and the learning procedure is sufficiently general
to encompass various learning tasks, including regression, classification, and CDE.

Decision trees As in the introduction, consider a domain X and a codomain Y,
and let Z be the training set, which is a collection of n pairs (x, y) ∈ X × Y. A
decision tree T is a strict rooted binary tree such that:

1. each non-leaf node v stores a split rule sv that maps each element of X to either
the left or the right child of v, splitting X into two. For any node u (leaves
included), there is a subset of X that is mapped to u. Any x ∈ X is mapped
to all the nodes found by walking down the tree T starting from the root and
following the split rule at each encountered non-leaf node. For any node u, we
denote with T(u;T,Z) the subset of Z that is mapped to u. For any x ∈ X we
denote with tl(x;T ) the leaf of T that x is mapped to;

2. each leaf ` stores some information L(`;T ), a set of values whose role we describe
below. L(`;T ) is a function of T(`;T,Z), the elements of Z that T maps to `.

As an example, in standard regression trees with numeric features, a split rule sv at
a non-leaf node v is a univariate threshold function, which is an indicator function
for an inequality on the value of a single feature, such as “age ≤ 4.” Elements that
satisfy the condition are mapped to the left child of v, the others to the right child.
In the same scenario, the information L(`;T ) stored at a leaf ` is the mean of the
Y components of T(`;T,Z).

We are usually interested in the leaf information or in the set of training points
associated with the leaf containing some query point x ∈ X , so we abuse notation,
taking L(x;T ) to mean L

(
tl(x;T );T

)
, and T(x;T,Z) to mean T

(
tl(x;T );T,Z

)
.
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Query answering Decision trees and random forests are used to answer queries.
For a decision tree T (we discuss forests later) that makes predictions in some
codomain U , queries are answered with the function q(·;T ) : X → U , where for
x ∈ X , q(x;T ) is computed using the information L(x;T ) stored at the leaf to
which T maps x. In univariate regression, U = Y = R, and the query response
is simply q(x;T ) = L(x;T ), but in general U may be different than Y (e.g., in
probabilistic classification, Y is a discrete set, and U contains distributions over
Y), and the leaf information may be used in various ways to respond to queries.

Impurity criterion The split rule in each non-leaf node is learned using the training
set. Before describing the learning procedure, we introduce impurity criteria, which
are functions m : Yn → R. For a set of training labels Y ∈ Yn, m(Y ) is the impurity
value of Y , which is usually a proxy for the average loss that any constant prediction
would incur over Y . We often abuse notation, taking m(Z) for Z ∈ (X × Y)n to
simply ignore X , and compute the impurity over the Y components of Z.

The Mean Square Error (MSE) impurity, used in regression trees (Leo et al.
1984), is

mmse(Y ) =
1

|Y |
∑
y∈Y

(
y − Ȳ

)2
, where Ȳ =

1

|Y |
∑
y∈Y

y . (1)

Taking P̂(i) to be the sample frequency (in Y ) of i ∈ Y, the (discrete) entropy
impurity, used in information-gain classification trees (Quinlan 1986), is

mH(Y ) = −
∑
i∈Y

P̂(i) ln
(
P̂(i)

)
. (2)

These impurities correspond to the square loss and cross entropy loss of regressors
and probabilistic classifiers, respectively, though they may also be interpreted as
measures of dispersion at the leaves of a decision tree. Under either interpretation,
by selecting splits to minimize total leaf impurity, decision trees seek to explain as
much variation in Y through X as possible.

Some tree-based CDE methods (Pospisil and Lee 2018) use the Mean Integrated
Square Error (MISE) impurity, defined as

mmise(Y ) =
1

|Y |
∑
y∈Y

∫
Y

(
ρ̂B(y)− ρ(y|x)

)2
dy,

where ρ̂B(·) is the estimated density computed using B, and ρ(·|x) is the true
conditional density given x. While this impurity criterion incentivizes returning
ρ(·|x) as the estimate, computing mmise(Y ) requires knowledge of ρ(·|x) itself, so
Pospisil and Lee (2018) approximate these true densities with a cosine or tensor
basis non-parametric estimate. Since estimating ρ(·|x) is the goal of CDE, using
the MISE impurity creates a cyclic dependency that is not easily resolved.

Learning procedure The learning procedure builds the tree starting from the root.
It chooses a split rule sv for the current node v and creates its two children. To
choose sv, it finds the partitioning of T(v;T,Z) into L and R that maximizes, over
some family of partitionings (such as the univariate thresholds mentioned above
for regression trees), the impurity reduction w.r.t. m(·), defined as∣∣T(v;T,Z)

∣∣m(T(v;T,Z)
)
−
(
|R|m(R) + |L|m(L)

)
. (3)
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The split rule sv stored at v is then chosen in such a way as to be consistent with
the partitioning of T(v;T,Z) into L and R. The procedure recursively splits each
child v until a stopping criterion is met. Example criteria include the depth of
v exceeding a user-specified threshold, the impurity reduction falling short of a
user-specified threshold, or the family of partitionings for v being empty.

Random forests A random forest F (Breiman 2001) is a collection of trees T1, . . . , Tt,
where each tree is trained using the procedure described above, but each tree uses
a resampled training set. This bagging of the original training set Z is done with
the goal of increasing diversity and lowering variance. To further promote diversity
among the forest, a random subset of the family of partitionings is searched at each
node. Given a query point x ∈ X , the leaf information L(x;Tj) for each tree Tj ∈ F
is used to compute an ensemble response to queries. In the running example of
regression trees, the query response is a simple average of tree predictions, namely

q(x;F ) =
1

t

∑
T∈F

L(x;T ) .

3 Related work

Rosenblatt (1969) first describes CDE with kernel CDE, which applies Kernel
Density Estimation (KDE) to the CDE problem, by reporting ρ̂(y|x) = ρ̂(y,x)

ρ̂(x) , for
each ρ̂(·) estimate on the RHS made with KDE. Kernel CDE and many other
nonparametric estimators require that the joint density is absolutely continuous to
ensure that densities exist and that densities over Y and X × Y exist. Generalized
Linear Models (GLM) (Nelder and Wedderburn 1972) are CDE methods that
essentially generalize linear regression beyond the fixed-variance Gassian case. They
do not require absolute continuity, although Y must be continuous. Low-dimensional
GLM are generally interpretable but inflexible, while generalizations like import
vector machines (Zhu and Hastie 2002) are flexible but uninterpretable.

By their inherently probabilistic nature, graphical models are well-suited for
CDE. Cutset networks (Rahman et al. 2014; Di Mauro et al. 2017) are OR trees
with tractable probabilistic models at their leaves, and mixed-sum product networks
(Molina et al. 2018) are graphical models with tree structure for mixed data. Each
bears some resemblance to decision trees, and admits more efficient induction and
inference than general graphical models. However, they must be large enough to
represent conditional density relationships between all variables, since they make
no distinction between features and labels. Answering CDE queries on these models
requires, despite their tree structure, a complicated global process of marginalization,
conditioning, and related operations, often spanning the entire network. This
procedure is less efficient and more recondite to the human analyst than standard
decision tree queries, which occur locally along a single root-to-leaf path.

Decision trees are lauded for their simplicity, efficiency, and interpretability, but
current tree-based CDE techniques lack these properties. Chaudhuri et al. (2002)
propose the first tree-based Conditional Quantile Estimation (CQE) technique,
and Meinshausen (2006) introduces the first tree-based CQE approach, Quantile
Regression Forest (QRFs). QRFs minimize standard regression impurity criteria to
select split rules, which essentially only consider the means of the target variable
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y in the subsets resulting from the split, rather than taking into account the
entire sample distribution of the target variable. These impurity criteria are ill-
suited for CDE, as they do not incentivize splits that improve CDE estimates
(discussed further in Sect. 4.2). Pospisil and Lee (2018) introduce Random Forests
for Conditional Density Estimation (RFCDE), which are largely equivalent to CQE,
except they use estimated MISE impurity (whose issues were discussed in Sect. 2),
and output KDE (effectively kernel-smoothed quantile estimates). RFCDE and
QRF queries operate on the training labels mapped to each leaf, which must be
stored and processed explicitly, incurring high storage and query costs.

Hothorn and Zeileis (2017) propose the transformation forest (TF), which
chooses split rules using null-hypothesis testing. It is not clear that conservatively
chosen splits benefit forests, as ensemble methods thrive on diverse weak learners.
TFs fit distributions using transformation families: given a fixed univariate PDF ψ
they pick an invertible transformation function φ : R→ R, producing the density
estimate (ψ ◦ φ)(y) = | ddyφ(y)|−1ψ

(
φ(y)

)
. The learned φ can be complicated,

yielding uninterpretable models even for simple ψ, and TFs must also store and
process raw labels to answer forest queries (see also Sect. 5).

CaDET overcomes these limitations with a parametric approach, learning
interpretable trees that make parametric density estimates. It uses the empiri-
cal cross-entropy impurity criterion, which incentivizes effective splits for CDE.
CaDET attains low storage and query costs by storing sufficient statistics of the
training labels associated with each leaf, requiring bounded memory and com-
putation. CaDET estimates parametric densities within a user-selected family,
which are generally more interpretable, and learning them requires fewer samples
than nonparametric estimates. Finally, as CaDET makes no assumptions on the
underlying probability space, it can be instantiated directly on arbitrary probability
spaces (including multivariate, mixed, and other exotic cases).

4 CADET: Interpretable parametric CDE with trees and forests

CaDET is a specific instantiation of the decision tree and random forest models
(Sect. 2). It makes heavy use of sufficient statistics, so we first discuss this concept.

4.1 Sufficient statistics

Let F be a parametric family of PDFs over Y, with parameter space Θ, and take
θ ∈ Θ. The member of F identified by θ is denoted as ρ(·;F , θ). We omit F from
this and other notation when clear from context.

Let Y ∈ Yn for some sample size n, sampled i.i.d. from the distribution arising
from some unknown ρ(·; θ) ∈ F . A sufficient statistic for Θ (alternatively referred to
as a sufficient statistic for F) is a vector-valued function w(n) : Yn → Rdim(w) (where
dim(w) is the codomain dimension of w(·)) such that w(n)(Y ) is as informative as
Y for the purpose of estimating the unknown θ that determines the unknown PDF
ρ(·; θ) (Casella and Berger 2002, Sect. 6.2). For example,

w(n)(Y ) =

( ∑
y∈Y

y,
∑
y∈Y

y2
)
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is a sufficient statistic for the Gaussian family, with MLE mean and variance

µ̂ =
w(n)

1 (Y )

n and σ̂2 =
w(n)

2 (Y )

n − µ̂2. A sufficient statistic for the Pareto family is

w(n)(Y ) =

(
min(Y ),

∏
y∈Y

y

)
. (4)

The Fisher-Neyman factorization theorem (Halmos et al. 1949) shows that for any
PDF ρ(·; θ) : Y → R0+ from a family F with sufficient statistic w(1)(·) : Y →
Rdim(w), there exists a base measure h(·) : Y → R0+ and a factorization function
F(·; ·) : Rdim(w) ×Θ → R0+ such that

ρ(·; θ) = h(·)F
(
w(1)(·); θ

)
. (5)

We now define p(n)(·) : Rdim(w) → Θ to be the function that selects θ ∈ Θ to
maximize the likelihood of an i.i.d. sample Y ∈ Yn given w(n)(Y ):

p(n)
(

w(n)(Y )
)

= arg max
θ∈Θ

∏
y∈Y

ρ(y; θ) = arg max
θ∈Θ

∑
y∈Y

ln
(
F(w(n)(Y ); θ)

)
, (6)

where the rightmost equality follows from (5). We omit the sample-size superscript
from both w(·) and p(·) when clear from context, and further abuse notation when
discussing trees, letting w(n)(Z) ignore the X elements of a sample Z ∈ (X × Y)n.

Exponential class A natural sufficient statistic is a sufficient statistic for F , such
that for i.i.d. samples Y ∈ Yn, Y ′ ∈ Yn

′
, and their concatenation Y ] Y ′, it

holds (Casella and Berger 2002, Thm. 6.2.10) that

w(n+n′)(Y ] Y ′) = w(n)(Y ) + w(n′)(Y ′) . (7)

A distribution family F with parameter space Θ and support Y is said to be in the
exponential class if it admits a factorization into a natural sufficient statistic w(1)(·) :
Y → dim(w), base measure h(·) : Y → R+, parameter function η(·) : Θ → Rdim(w),
and log-partition function A(·) : Θ → R, such that any PDF ρ(·; θ) ∈ F can be
written as

ρ(·; θ) = h(·) exp
(
η(θ) · w(1)(·)− A(θ)

)
, (8)

The exponential class contains many well-known (thus interpretable to a human
analyst) distribution families, including the Gaussian, exponential, gamma, beta,
Dirichlet, geometric, and Poisson families. Sufficient statistics and combination
functions like (7) are key to the performance guarantees of CaDET, so naturally
one might wonder under which conditions they exist. The Pitman-Koopman-
Darmois theorem (Koopman 1936) shows that if a family F has fixed support and
a bounded-dimensional sufficient statistic, then F is in the exponential class.

Among variable-support families with a bounded-dimensional sufficient statistic
w(·), some admit a combination function g(·, ·) such that

w(n+n′)(Y ] Y ′) = g
(
w(n)(Y ),w(n′)(Y ′)

)
, (9)

which generalizes (7) beyond the exponential class. The Pareto and uniform interval
families admit such g(·, ·); the reader is invited to derive one for the Pareto family,
starting from the sufficient statistic in (4). CaDET estimates conditional densities
by storing sufficient statistics at each leaf of the decision tree, which through (6),
are isomorphic to MLE distribution estimates.
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4.2 Decision trees for interpretable parametric CDE

CaDET is an instantiation of the decision tree model described in Sect. 2. It is
parameterized by a parametric family F , which determines the class of densities
that a CaDET tree or forest can predict. Bounded-dimensional sufficient statistics
and combination functions are needed to efficiently train CaDET trees and to
aggregate tree information into forest queries, so here we assume these exist for F .
Their nonexistence does not impact the theory behind CaDET, thus with minor
changes, CaDET may be instantiated for parametric families lacking bounded-
dimensional sufficient statistics or combination functions, although in this case,
training time, forest memory, and forest query time costs may be higher.

Impurity criterion Let F be a parametric family of PDFs, with bounded-dimensional
sufficient statistic w and parameter space Θ. CaDET minimizes the Empirical
Cross Entropy (ECE) impurity, defined as

mece(Y ;F) = − 1

|Y |
∑
y∈Y

ln
(
ρ(y; p(w(Y )))

)
. (10)

The ECE impurity is parametric in the sense that it depends on the hyperparameter
F (omitted when clear from context). This dependence is key, as it allows mece to
incentivize splits that lead to the data being well-fit by F . The ECE impurity should
be contrasted with the MSE loss from (1), which Hothorn and Zeileis (2017) argue
is ineffective for CDE, as it is not sensitive to changes over X of the conditional
distribution of Y, but only to changes of the conditional expectation of Y.

The ECE is the impurity-criterion counterpart of the cross entropy loss, often
used in neural networks (Goodfellow et al. 2016, Ch. 5.5) and binomial regression
models (Weisberg 2005, Ch. 12). Cross entropy loss is theoretically motivated,
both from decision-theoretic and coding-theoretic perspectives. In decision theory,
a strictly proper scoring rule is a loss function that is uniquely minimized by
predicting the true density. The cross entropy (often called the logarithmic scoring
rule), is the only such rule (up to affine transformation) that is also local, meaning
that given label y and estimated distribution ρ̂(·), it may be computed as a function
of ρ̂(y) (Shuford et al. 1966). From a coding theory perspective, cross entropy is a
measure of the degree of inefficiency of using one distribution to encode symbols
from another. The source coding theorem (Shannon 1948) shows that maximal
efficiency is attained when the encoding distribution matches the true distribution.

The entropy of a PDF ψ with support Y is3

H(ψ) = −
∫
Y
ψ(y) ln

(
ψ(y)

)
dy .

We now show that ECE impurity and the entropy of the MLE distribution often
coincide in the exponential class.

Lemma 1 Suppose Y ∈ Yn, and F a member of the exponential class, with
base measure h(·) and sufficient statistic w(·). Let θ = p(n)

(
w(n)(Y )

)
, B̂ =

1
n

∑
y∈Y ln

(
h(y)

)
, y′ drawn with density ρ(·; θ), and B = Ey′

[
ln
(
h(y′)

)]
. Then

3 This definition of entropy encompasses differential entropy for integration w.r.t. the Lebesgue
measure, discrete entropy for integration w.r.t. the counting measure, and other entropies with
appropriate measures.
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1. if ln
(
h(·)

)
is an affine function of w(1)(·), then mece(Y ) = H

(
ρ(·; θ)

)
; and

2. in general, mece(Y ) = (B − B̂) + H
(
ρ(·; θ)

)
.

Proof We first show Case 2, from which Case 1 follows.

mece(Y ) = − 1

n

∑
y∈Y

ln
(
ρ(y; θ)

)
Definition of mece(·)

= − 1

n

∑
y∈Y

ln
(
h(y)

)
+ η(θ) · w(1)(y)− A(θ) Equation 8

= (B − B̂) + A(θ)− C − η(θ) · 1

n

∑
y∈Y

w(1)(y) Algebra

= (B − B̂) + A(θ)− C − η(θ) · 1

n
w(n)(Y ) Equation 7

= (B − B̂) +
(

A(θ)− C − η(θ) · Ey′ [w(1)(y′)]
)

Maximum Likelihood

= (B − B̂) + Ey′

[
A(θ)− C − η(θ) · w(1)(y′)

]
Linearity ofExpectation

= (B − B̂)− Ey′
[
ln
(
ρ(y′; θ)

)]
Equation 8

= (B − B̂) + H
(
ρ(·; θ)

)
. Definition of H(·)

The Maximum Likelihood step holds since in MLE, sample sufficient statistics are
always preserved in the fitted distribution (this property is evident in the maximum
entropy interpretation of MLE, where it holds by definition).

The additional hypothesis in Case 1 implies the existence of β ∈ R, α ∈ Rdim(w)

such that ln
(
h(·)

)
= β + α · w(1)(·). It then holds that

B̂ =
1

n

∑
y∈Y

ln
(
h(y)

)
= β + α · 1

n
w(n)(Y ) = β + α · Ey′

[
w(1)(y′)

]
= B,

and via Case 2, noting that here B − B̂ = 0, we obtain Case 1. ut

Case 1 of Lemma 1 applies to many families of interest, such as the Gaussian,
gamma, and Von-Mises families, where h(·) is constant, and the beta, Dirichlet,
and log-Gaussian families, where ln

(
h(·)

)
is an affine function of w(1)(·). When

Case 1 holds, the splits chosen by CaDET are the same that would be chosen by
minimizing entropy, as done in information gain trees. These trees select splits that
explain as much variation in Y as possible, leading to more homogeneous leaves to
which more accurate distributions can be fit. When the ECE and entropy do not
coincide, an argument can be made for using either as an impurity criterion, and
CaDET can be adapted to instead select entropy-minimizing splits if so desired.

A more practical consequence of Lemma 1 is that the impurity reduction (see (3))
w.r.t. mece(·) of any split at any node with training labels Y can computed from
w(Y ) without having to iterate over Y or knowing B̂. Furthermore, mece(Y ) can
be computed from H

(
ρ(·; θ)

)
even in Case 2, if B̂ (the sum of log base measures)

is computed along with w(Y ). Similar results can often be derived for F not in
the exponential class; the reader is invited to confirm that for the uniform interval
distribution (over R or Z), it holds that mece(Y ) = H

(
ρ(·; θ)

)
.
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Leaf information The information L(`;T ) stored at the leaf ` of a CaDET tree T
is the number of training points mapped to the leaf |T(`;T,Z)|, and the sufficient
statistics w

(
T(`;T,Z)

)
of the training elements T(`;T,Z) that T maps to `. For

notational convenience, we take L(·; ·) to be a vector, where the 0th component is
the sample size, and the remaining components are the sufficient statistic, i.e.,

L0(`;T ) =
∣∣T(`;T,Z)

∣∣, and L1:dim(w)(`;T ) = w
(
T(`;T,Z)

)
,

where Va:b(·) is vector slice notation, corresponding to codomain indices a, . . . b
of the vector-valued function V (·). Because CaDET stores only w

(
T(`;T,Z)

)
at

each leaf `, it has lower storage and query time costs than current tree-based CDE
methods, which must store and process raw training labels to answer forest queries.

Response to queries Given a tree T , the response q(·;x, T ) to a query at x ∈ X is
the MLE PDF w.r.t. F on the Y components of T(x;T,Z):

q(·;x, T ) = ρ
(
· ; p(N)

(
w(N)(T(x;T,Z)

)))
= ρ

(
· ; p(N)(L1:dim(w)(x;T )

))
,

taking N = |T(x;T,Z)| = L0(x;T ). Since CDE responses are PDFs, which are
themselves functions, we write q(·;x, T ), where the first argument is an element of
the domain of the PDF, the second the query point, and the third the tree.

This response is well-motivated, as T(x;T,Z) should be an approximately
independent sample from approximately the conditional distribution at x. The
“approximate” qualification is needed as split choice induces some dependence, and
the conditional distribution changes as Y varies throughout the leaf. Ignoring the
approximation, it is then reasonable to return the MLE estimate for this sample.

The careful reader may notice that one could just store this PDF at the leaf, in
place of the sufficient statistic of the training set mapped to this leaf. For trees,
either suffices, but we will require sufficient statistics to answer queries with forests.

4.3 Random forests

Consider a random forest F composed of CaDET trees T1, . . . , Tt, with training
sets Z1, . . . , Zt, and shared distribution family F . Here the response q(·;x, F ) to
the query at x ∈ X is

q(·;x, F ) = ρ

(
· ; p(N)

(
w

(
t⊎
i=1

T
(
x;Ti, Zi

))))
=ρ

(
· ; p(N)

(∑
T∈F

L1:dim(w)(x;T )

))
,

where N =
t∑
i=1

∣∣T(x;Ti, Zi
)∣∣ =

∑
T∈F

L0(x;T ),

and for exponential-class F , the sum is from (7), and must be replaced by repeated
applications of g(·, ·) from (9) for F not in the exponential class.

If each training set Zi for each Ti were drawn i.i.d., then sample concatenation
across the trees would be well-motivated, since for any x ∈ X , by the same reasoning
as in the tree case, each T(x;Ti, Zi) is an approximately i.i.d. sample from the true
conditional density at x, thus the MLE estimator for their sample concatenation
should be better than any of the individual trees estimates. When instead each
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Zi is created by bagging the original training data, the samples at each leaf are
more dependent (duplicates are more likely), and MLE should behave similarly
to a parametric bootstrap estimate, but the same reasoning of combining small
approximately i.i.d. samples into one large sample and performing MLE holds.

4.4 Discussion

On domains and parametric families CaDET can be instantiated with any para-
metric family with a bounded-dimensional sufficient statistic over any Y. In contrast,
non-parametric techniques are generally tied to a particular codomain, often Rd.
Although many spaces (e.g., discrete, simplicial, spherical, or cyclic) can be embed-
ded in Rd, interpreting a nonparametric model over Rd in Y ⊆ Rd may invalidate
density estimates, as densities over Rd are not necessarily densities over Y.

Specifically, if Y ⊆ Rd, but densities in Y are interpreted w.r.t. the Lebesgue or
Borel measures in Rd, then often the total mass over Y is less than 1. Furthermore,
if Rd and Y do not share a measure (as in simplicial or spherical domains, where
Y is (d− 1)-dimensional), the total mass of estimated densities can even exceed4 1.
Workarounds like transformation functions exist, though they have their own issues
(see Sect. 5), whereas CaDET can handle tasks directly in their original space,
using simple probabilistic models designed to work well for a particular setting.

Parametric versus non-parametric sample complexity CaDET’s restriction to
parametric families with bounded-dimensional sufficient statistics necessarily limits
the representative power of its CDEs: if F poorly models true conditional densities,
then nonparametric CDE trees may outperform CaDET given enough training
data. However, CaDET will generally perform better with small sample sizes, as
MLE exhibits faster convergence than nonparametric techniques.5 We show an
example of this behavior in Sect. 6.

This faster rate is particularly important in CDE-trees, since each leaf requires
enough data to accurately estimate conditional densities. CaDET trees thus require
fewer samples at each leaf than nonparametric methods, allowing them to better
model conditional density structure with additional splits. Even with additional
splits, CaDET generally remains more interpretable than nonparametric methods,
as splits are easily understood, whereas complicated nonparametric distribution
estimates are not.

Generalizing prior art Let Fc be the categorical family, and FG the unit-variance
Gaussian family. It holds by Lemma 1 that mece(·;Fc) = mH(·), and mece(·;FG) ∝
mmse(·). Thus, with these family choices, CaDET makes the same splits as entropy-
minimizing classification trees (Quinlan 1986) and MSE-minimizing regression
trees (Breiman et al. 1984), respectively. CaDET therefore generalizes two classic
decision-tree models to a broad class of parametric estimation problems.

4 For example, if Y is the unit circle S2, the uniform distribution on [−1, 1]2 with pdf ρ has
mass

∮
S2
ρ(z) dz = π

2
> 1 when integrated over the unit circle.

5 Concretely, the MISE decays as ωp(n−1) for the best-known KDE bounds (Agarwal et al.
2017), but Op(n−1) for parametric MLE (Kanazawa 1993).
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4.5 Training time complexity

Consider the training of a decision tree using a training set Z ∈ (X × Y)n, where
splits are chosen from all univariate threshold functions over a constant number of
features to minimize either mH(·) (for classification) or mmse(·) (for regression). The
time necessary for the training is in the best case Θ

(
n logn

)
, and in the worst case

Θ
(
n2
)
. TF (Hothorn and Zeileis 2017) and RFCDE (Pospisil and Lee 2018) require

Ω
(
|T(v;T,Z)|

)
time to evaluate each potential split of node v, thus training them

takes time Ω
(
n2
)

in the best case and Ω
(
n3
)

in the worst case. These times are
worse than the ones mentioned above by a factor Ω̃(n

)
.

Training CaDET trees with a family F attains the faster training time com-
plexities of mH(·) and mmse(·) trees, as long as F has sufficient statistic w(·) and
combination function g(·, ·) (see (9)), such that g(·, ·), w1(·), and H

(
ρ(·; p(w))

)
for

any w ∈ Rdim(w) can all be evaluated in Θ(1) time. CaDET attains these time
complexities because sufficient statistics can be updated via g(·, ·) in amortized time
at each potential split, and entropies can be efficiently computed (by assumption),
matching the cost of computing discrete entropy or variance in classification or
regression trees. Without bounded-dimensional sufficient statistics or combination
functions, CaDET generally must perform Ω

(
|T(v;T,Z)|

)
work to evaluate a split

at node v, exactly as in RFCDE and TF. In this case, CaDET would then attain
the slower training time complexities of these algorithms.

5 Extensions

Parametric distributions with few parameters, such as univariate Gaussians, are
generally interpretable. However, the distribution families one might naturally
consider in high-dimensional or unfamiliar spaces may have many parameters,
thus becoming less interpretable. We now discuss three methods to construct rich
parametric families over complex domains from simple constituent families over
familiar domains, without sacrificing interpretability :

– product families, which are multivariate distributions built from univariate
constituent distributions;

– transformation families, which can be used to produce distributions with
restricted support to suit domain-specific requirements; and

– union families, which enable performing MLE over multiple families.

Product families We often want to estimate multivariate densities, i.e., Y is a
product space with Y = Y1 × · · · × Yd, but have domain-specific knowledge about
each Yi (e.g., whether the support is discrete, real, or semireal) which standard
primitive distributions, such as the multivariate Gaussian, would ignore. Product
families compute the joint density over Y as a product of density estimates (thus
treating each multiplicand as an independent random variable) over each Y1, . . . ,Yd.
Computation over product families is particularly convenient, as sufficient statistics,
densities, and entropies can all be computed from univariate densities, and the
exponential class is closed under finite products.

Product-family CaDET should be contrasted with CaDET applied separately
on each Yi, and estimating joint densities as products of univariate densities. In
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both cases, joint CDE are product distributions, however in the first case, CaDET
uses impurity reduction across all Y1, . . . ,Yd to select splits, whereas in the second
case, splits are separately learned for each Yi. If the conditional densities of each Yi
vary similarly over X , then this additional information allows better split selection
in the first case. Additionally, the product-family tree is simpler than the collection
of trees for each Yi, thus more interpretable and less prone to overfitting.

Transformation families Often Y is not Rd or some space with a plethora of
convenient well-known distribution families. For example, Y could be the unit
sphere, unit simplex, or some compact subset of Rd. Transformation families
contain distributions over such a Y, obtained by transforming familiar distributions
over some isomorphic space Y ′. Such transformations can be intuitive and thus
interpretable; for instance we may transform Cartesian coordinates of points on
the Earth’s surface to the more familiar latitude and longitude coordinates.

A transformation function φ : Y → φ(Y) is a differentiable invertible mapping.
Given a family F over Y parameterized by Θ, we define the φ-transformed density

(ρ ◦ φ)(·; θ) =
∣∣J (φ(·)

)∣∣−1
ρ
(
φ(·); θ

)
, (11)

and the corresponding φ-transformed family

F ◦ φ = {(ρ ◦ φ)(·; θ) : θ ∈ Θ}, (12)

where |J (φ(·))| is the absolute determinant of the Jacobian of φ. In CaDET
we assume the existence of a bounded-dimensional sufficient statistic, which is
particularly convenient with transformation functions through (5), as we may
compute the base measure of F ◦ φ as h(·;F ◦ φ) = |J (φ(·))|−1h(φ(·)) and the
sufficient statistic as w(·;F ◦ φ) = w(φ(·);F).

For example, we can construct the inverse-gamma family from φ(y) = y−1 and
the gamma family, and the log-normal family from φ(y) : Rd+ → Rd = ln(y) and
the Gaussian family. The logarithm elicits a domain-change, yielding families over
R+, which is useful for estimating positive quantities.

Transformation functions, when paired with an appropriate coordinate system,
can also be used to construct distributions over sets of Lebesgue measure zero, such
as the unit simplex ∆d = {y ∈ (0, 1)d+1 : ‖y‖1 = 1}, or the unit sphere Sd =
{y ∈ Rd+1 : ‖y‖2 = 1}, which are of key importance in compositional statistics
and directional statistics, respectively. E.g., for simplicial data we can apply the
Additive Log-Ratio-Transform (ALRT) (Aitchison 1982)

φALRT(y1, . . . , yd+1) : ∆d → Rd =

(
ln

(
y1
yd+1

)
, ln

(
y2
yd+1

)
, . . . , ln

(
yd
yd+1

))
, (13)

and for spherical data, the stereographic projection transform

φStg(y1, . . . , yd+1) : Sd → Rd =

(
y1

1− yd+1
,

y2
1− yd+1

, . . . ,
yd

1− yd+1

)
. (14)

In regression under the assumption of heteroskedastic noise, where the task
is to predict E[y|x], data transformation is unsatisfying: for some transformation
φ, learning E[φ(y)|x] is insufficient, as it does not in general hold that E[y|x] =
φ−1(E[φ(y)|x]). In contrast, in CDE, we can convert conditional densities over φ(Y)
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to conditional densities over Y through (11), so we retain the ability to interpret
transformed variables in the untransformed space.

Hothorn and Zeileis (2017) also use transformation functions in their Transforma-
tion Forests (TFs), though they fix distributions and parameterize transformations,
while CaDET does the opposite. For simple cases like affine transformations in
location-scale families, they are equivalent, but we argue that simple distributions
with complicated parameterized transformations are generally less interpretable
than complicated parametric distributions with simple fixed transformations. TFs
also only handle Y = R, and operate on quantiles rather than densities. Generalizing
TFs to Rd is nontrivial, as working with multivariate quantiles or CDFs of transfor-
mations generally requires sophisticated integration, complicating interpretability
and computation.

Transformation is thus intuitive, interpretable, and computationally convenient
for parametric CDE. These beneficial properties put this use of transformation in
stark contrast to its use in regression and quantile estimation, where it is in general
difficult to interpret the output of transformed models in the original space.

Union families It is often hard to select a priori a parametric family to model
conditional densities. One could select between models trained over multiple families,
but to do so would be inefficient, and would perform poorly when the best family to
fit conditional densities varies over Y. It would be preferable to learn a model that
is able to select distribution families in a data-dependent manner, fitting different
distribution families to different regions of X .

One could select the MLE at each leaf among multiple families, but this
approach favors complexity over simplicity, and tends to overfit. Given families
F1,F2 such that F1 ⊆ F2 (e.g., the exponential and gamma families), for any i.i.d.
sample Y ∈ Yn, with MLE parameter estimates θ1 = p(n)

(
w(n)(Y ;F1);F1

)
and

θ2 = p(n)
(
w(n)(Y ;F2);F2

)
, the MLE sample densities obey

ρ(Y ;F1, θ1) =
∏
y∈Y

ρ(y;F1, θ1) ≤
∏
y∈Y

ρ(y;F2, θ2) = ρ(Y ;F2, θ2) .

However, the estimate ρ(·;F1, θ1) is often preferable to ρ(·;F2, θ2), for instance when
they fit similarly well or n is small, as simpler distributions are more interpretable
and generally less susceptible to overfitting.

We address these issues with a more nuanced approach, termed regularized union
family selection. Given families F1, . . . ,Fm, with parameter spaces Θ1, . . . , Θm,
the union family F = ∪mi=1Fi has parameter space ∪mi=1({i} ×Θi), with

ρ
(
·;F, (i, θ)

)
= ρ(·;Fi, θ),

thus F can be used to select among distributions from several families. The sufficient
statistics for each Fi are enough to perform MLE within each subfamily, and for
exponential-class families, we may perform MLE over the entire union family given
these sufficient statistics and the sample log base measures ln

(
h(·;Fi)

)
associated

with each Fi (see Lemma 1). However, to control for overfitting, prioritize simpler
distributions, and incorporate a priori domain knowledge, we take regularization
hyperparameters λ = 〈λ1, . . . , λm〉, and select the distribution that maximizes
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regularized sample log likelihood, defining p(n)(·;F, λ) as

p(n)(w(n)(Y );F, λ
)

= argmin
i∈{1,...,m},θ∈Θi

λi +
1

n

∑
y∈Y

ln
(
ρ(y;Fi, θ)

)
,

with corresponding regularized empirical cross entropy impurity criterion

mece(Y ;F, λ) = min
i∈{1,...,m}

λi + mece(Y ;Fi), (15)

where the notation explicitly references the family and regularization parameters.

There are many reasonable ways to select regularization parameters. For exam-
ple, in our experiments we use the Akaike Information Criterion (AIC), setting

λi =
dim(Θi)

n
, for i ∈ {1, . . . ,m}, (16)

where dim(Θi) denotes the dimension of the parameter space of Fi.

6 Experimental evaluation

Here we present the results of our experimental evaluation of CaDET, including
the comparison with RFCDE (Pospisil and Lee 2018). We test the versatility
of CaDET by instantiating it with many parametric families, including over
multivariate codomains, probability simplices, and a cyclic codomain. We also
evaluate CaDET with a union family and regularized ECE impurity (see Sect. 5).
The accuracy of a learned model M is measured with the Average Conditional Log
Likelihood (ACLL) of the conditional density estimations produced by M on a test
set Z′ ∈ (Y × X )n

′
, i.e.,

1

n′

∑
(x,y)∈Z′

ln
(
q(y;x,M)

)
.

The ACLL is a good accuracy measure, as it can be computed from the esti-
mated conditional density q(·;x,M), and is maximized in expectation by the true
conditional density.

Implementation Our implementation6 of CaDET extends scikit-learn (Pedregosa
et al. 2011). It supports many distribution families, shown in Table 1. When
building trees, it selects the split that minimizes impurity over all univariate
threshold functions such that at least some user-specified number of training points
are assigned to each child. We call this parameter the Minimum Samples per Leaf
(MSL). Forests do not search all univariate threshold functions in all features, but
instead consider only univariate thresholds on b

√
dim(Y) + 1/2c features, drawn

uniformly without replacement at each node.

6 Source code is provided at http://www.cs.brown.edu/people/ccousins/cadet/ under the
new BSD license.

http://www.cs.brown.edu/people/ccousins/cadet/
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Domain Type Distribution Family Domain dim(w) EC h(·)

Real

Exponential R0+ 1 Yes 1
Gamma " 2 Yes 1
Inverse Gamma R+ 2 Yes 1
Inverse Gaussian " 2 Yes h
Pareto " 2 No —
Unit Scale Pareto (1,∞) 1 Yes 1
Uniform R 2 No —

Directional
Von Mises [0, 2π) 2 Yes 1
Von Mises-Fisher Sd (sphere) d Yes 1

Simplicial
Beta (0, 1) 2 Yes f ◦ w
Dirichlet ∆d (simplex) d Yes f ◦ w

Multivariate
Real

Gaussian Rd 2d+
(d
2

)
Yes 1

Gaussian Uncorrelated " 2d Yes 1
Gaussian Symmetric " d+ 1 Yes 1
Log-Gaussian Rd+ 2d+

(d
2

)
Yes f ◦ w

Log-Gaussian Uncorrelated " 2d Yes f ◦ w
Log-Gaussian Symmetric " d+ 1 Yes f ◦ w

Integral

Geometric N0 1 Yes 1
Poisson " 1 Yes h
Log Series " 1 Yes h
Uniform Z 2 No —

Nominal
Bernoulli {0, 1} 1 Yes 1
Categorical {1, 2, . . . , d} d− 1 Yes 1

Table 1 Supported distribution families in our software package, with domain, sufficient
statistic codomain dimension dim(w), whether the family is in the exponential class (EC), and
if so, whether the base measure h(·) is a constant 1, a function of the sufficient statistic f ◦w, or
neither h. Gaussian uncorrelated refers to Gaussians with 0 nondiagonal covariance, Gaussian
symmetric refers to Gaussians with scaled identity covariance matrices, and each log Gaussian
variant refers to a logarithmically-transformed Gaussian family.

Baseline We compare the accuracy and interpretability of various CaDET models
to RFCDE models (Pospisil and Lee 2018) on many multivariate CDE tasks.
RFCDE was experimentally shown to be superior to other tree-based techniques
such as QRFs (Meinshausen 2006) and TFs (Hothorn and Zeileis 2017), both of
which only operate over univariate Y. We use the RFCDE implementation provided
by the authors, with Gaussian KDE, the normal reference dynamic kernel-width
selection strategy, and a 7-term tensor-cosine basis. This implementation does
not allow log-density queries, and thus can output conditional density 0 (due to
limited floating-point precision), to which we assign log-density -1000. This choice
does not artificially disadvantage RFCDE, as our CaDET implementation permits
floating-point log-density queries, which can attain values far below -1000.

Datasets, tasks, and families We used datasets with different associated prediction
tasks, requiring different choices of the parametric family F :

– The Air Quality dataset (De Vito et al. 2008) tasks us with estimating
(multivariate) conditional probability densities of the concentrations (particle count
or unit mass per unit volume) of four pollutants, given time, temperature, humidity,
and air quality sensor readings. We randomly split the dataset into training and test
sets of 3,698 samples each. Concentrations must be non-negative, so we use CaDET
with the unconstrained, uncorrelated, and symmetric log-Gaussian families. We
compare these models to logarithmically-transformed RFCDE.
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– The Batting dataset (Lahman 2018) is our largest dataset, with 88,461 samples,
each representing a professional baseball player, with height, weight, age, hand-
edness, birthplace, league, and team features. Batting tasks us with estimating
the probabilities of a player attaining each of five batting outcomes (base 1–3,
home, or strikeout), thus outcome distributions are members of Y = ∆4 = {y ∈
(0, 1)5 : ‖y‖1 = 1}. We also define a 2-way variant, where the task is to estimate
the probability of striking out, in which case Y = [0, 1].

Dirichlet-CaDET and beta-CaDET produce densities w.r.t. the Lebesgue
measure over ∆4 and [0, 1], respectively, and thus are appropriate for the task.
We compare these models to three Gaussian-CaDET models and to RFCDE,
using the ALRT from (13) for the 5-way Gaussian-CaDET and RFCDE models
to convert to a problem over R4, letting the strikeout probability be the last
(asymmetric) variable of the transformation. In the 2-way task, we compare beta-
CaDET to Gaussian-CaDET and RFCDE without transformation, although a
density estimate ρ from the non-beta models has

∫ 1

0
ρ(y) dy < 1 (see Sect. 4.4).

This disadvantage is intrinsic to these approaches and highlights the flexibility of
CaDET with transformation functions.

Interpretability is particularly difficult in the 5-way task. Here the Dirichlet
estimates of Dirichlet-CaDET should be understood by any analyst familiar
with compositional statistics, making this model the most interpretable. The
Gaussian models are also quite simple, but although standard in compositional
statistics, some effort is required to interpret the ALRT (see (13)), which makes
the Gaussian models behave roughly like log-Gaussian models. With covariance
matrices, Gaussian-CaDET can model correlations between (approximate) log-
frequencies, e.g., between the probabilities of reaching first-base and reaching
second-base, unlike the Dirichlet distribution, which has only 5 parameters. Thus,
although inherently more complicated, Gaussian-CaDET remains interpretable,
and can even yield insights that would be impossible for Dirichlet-CaDET.

– The task on the Sml2010 dataset (Zamora-Mart́ınez et al. 2014) is to estimate
the time of day, represented as a value in [0, 1), where 1/2 is noon. This task is
interesting for its cyclic nature. Classical regression struggles around midnight, as
training points immediately before and after midnight average to noon (maximally
incorrect), and non-parametric methods fail to enforce the constraint that predicted
times be on the interval [0, 1), nor do they leverage the cyclic nature of the label
space. We use the Von-Mises distribution family, scaled to have support [0, 1),
as well as Gaussian-CaDET and beta-CaDET, for our parametric models, and
compare to RFCDE.

– We use many UCI datasets (Table 2) to evaluate the efficacy of the impurity
criterion used by CaDET, the use of union families, and the competitiveness of
CaDET against RFCDE on real-world learning tasks. Each task is a multivariate
conditional density estimation task, with each label in Y = Rdim(Y). Most of these
datasets are intended for univariate classification or regression, but we instead
predict the continuous variables from the categorical or integer-valued variables. In
some cases, due to many missing values or lack of features, we leave some continuous
values as features; the details are presented in the supplementary material. We
compare several CaDET variants and RFCDE on these datasets.
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ACLL vs MSL on Air Quality ACLL vs N on Air Quality

MSL N

Fig. 1 ACLL as a function of MSL (left) and as a function of the number of noise features N
(right) on the Air Quality dataset. Test ACLL plotted with solid lines, and training ACLL
with dotted lines.

ACLL vs MSL: All Times ACLL vs MSL: 23:00–1:00 ACLL vs MSL: 11:00–13:00

MSL MSL MSL

Fig. 2 Experiments with Sml2010. Dotted lines denote training ACLL, and solid lines test
ACLL. Test ACLL on all times, 23:00–1:00, and 11:00–13:00 are plotted seperately.

6.1 Results

Impact of minimum samples per leaf on overfitting We first study how the (MSL)
parameter, which controls the minimum number of training samples per leaf
(enforced by the learning procedure), impacts overfitting in CDE trees. We plot
MSL versus training and test ACLL on the Air Quality dataset in Fig. 1 (left).
Here we consider only single trees, as diversity in random forests tends to obscure
overfitting in individual trees.

We see classic bias-variance trade-off curves for all models, with training ACLL
monotonically decreasing with the MSL, and test ACLL first increasing, then
decreasing. The training-test ACLL difference is a measure of overfitting, and
here it decreases as MSL increases, and also as the number of parameters in each
parametric family (see Table 1) decreases. The CaDET trees all perform optimally
at MSL ≈ 25, whereas RFCDE reaches optimal performance with MSL ≈ 100,
illustrating the lower sample complexity of parametric methods (see Sect. 4.4).

Figure 2 shows ACLL as function of MSL on the Sml2010 task. In Fig. 2
(left), we see that the Von-Mises-CaDET outperforms all competitors, which is
unsurprising, as Von-Mises density estimates are best able to represent uncertainty
across the midnight boundary. Indeed in Fig. 2 (center), we see that the Von-Mises-
CaDET ACLL decreases least when considering only test samples on the 23:00–1:00
interval, while the Gaussian-CaDET (which is least able to split mass between late
night and early morning) ACLL decreases the most. On the 11:00–13:00 interval,
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Fig. 2 (right), Gaussian-CaDET outperforms the remaining models for small MSL
(i.e., large trees with many leaves), but for higher MSL values, this advantage
disappears. These results support our claim that parametric models that leverage
domain-specific knowledge (in this case the cyclic nature of time) are superior to
generic models that do not.

Susceptibility to irrelevant features We now examine the response of the models to
irrelevant features: a well-designed impurity criterion should be imperturbable to
such features and choose splits independently from them. We augment the Air
Quality dataset by generating N additional noise features, where each feature
value for each sample was drawn i.i.d. from the standard Gaussian distribution.
We train models using MSL 50 on this augmented dataset. We plot training
and test ACLL as a function of N in Fig. 1 (right). As N increases, CaDET
ACLL decreases almost imperceptibly, whereas RFCDE ACLL drops sharply and
significantly. RFCDE’s performance drop is not due to overfitting to the noise
features, as both test and training ACLL rapidly decrease. Rather, we attribute
it to the approximation error of its learning algorithm, which is a consequence
of the chosen impurity criterion. The heuristic mmise estimate used by RFCDE
inadequately assesses the quality of splits, thus RFCDE often splits on noise features,
degrading model accuracy. The mece used by CaDET strongly disincentivizes splits
on noise features, resulting in similar models regardless of N .

Effectiveness of the chosen impurity criterion We now examine the importance
of the impurity criterion via ablation. We train Gaussian-CaDET trees with the
MSE impurity from (1) instead of the ECE from (10), and train “vanilla” CaDET
trees as a control. The results are shown in the two leftmost columns of Table 2
(we discuss the other columns later). We report ACLL to measure model accuracy,
and we quantify interpretability using model size, defined as the total number of
continuous parameters required to represent the distributions at each leaf of the
tree. Vanilla CaDET yields on average, and more often than not, higher (better)
ACLL scores, with much smaller, thus more interpretable, models.

Dependence on training set size We now evaluate the behavior of the ACLL as
we increase the training set size n on the Batting dataset. The MSL is fixed to
b
√
n+ 1

2c, and test ACLL is computed on all samples not in the training set. We
plot tree and forest experiments in Fig. 3, though overfitting is clearer in the trees.

In the 2-way task, when using trees, beta-CaDET performs the best, though
with sufficiently large samples, all models are comparable. In particular, each
CaDET model uses a 2-parameter distribution, so we expect a similar amount of
overfitting in each, and indeed we see similar rates of improvement as the training
size increases. RFCDE, as expected, overfits more due to its KDE estimates: its
rate of improvement levels off more slowly than the CaDET models.

In the 5-way tree task, dim(Θ), which varies between 5 for the Dirichlet and
symmetric Gaussian families, and 14 for the Gaussian family, strongly influences
model performance. Each model outperforms all others for a contiguous range of
n, and these ranges occur in order of dim(Θ), with RFCDE beating the CaDET
models only for the highest n we examined. The fact that RFCDE beats all other
models with sufficient data is unsurprising, as its KDE estimates are consistent,
thus with enough data should outperform the parametric estimates of CaDET.
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Tree ACLL vs n on Batting 2-Way Task Tree ACLL vs n on Batting 5-Way Task

n n
Forest ACLL vs n on Batting 2-Way Task Forest ACLL vs n on Batting 5-Way Task

n n

Fig. 3 Test ACLL versus training size n on the 2-way and 5-way Batting tasks. Vertical lines
mark where one model overtakes another in the 5-way experiment.

The Batting dataset contains 88,461 samples, and with only 7 features, we would
expect simple conditional density relationships between X and Y, thus this task,
relative to the others, should measure a model’s capacity to fit unconditional
densities (at leaves) more than its ability to model conditional structure via splits.

These experiments highlight that CaDET is not only particularly well-suited
to small-sample settings, but also that non-parametric methods overtake CaDET
only when an enormous amount of data is available, even on very simple datasets.
The case for CaDET is even stronger when interpretability is considered: CaDET
trees have O

(
dim(Θ)

√
n
)

total parameters, while RFCDE trees have Θ
(
dim(Y)n

)
,

as they must store all training labels at tree leaves.

Forests improve over trees for every model examined in this experiment. The
most significant improvement is in small-sample performance, which is unsurprising,
as forests combine estimates across trees, thus prediction are based on larger
numbers of training samples. The effect is most pronounced with RFCDE, as while
its small-sample performance is still worse than all CaDET forests, with enough
data, it eventually outperforms them. Again we conjecture that this is because the
Batting tasks primarily assess unconditional density estimation (at leaves), and
the bagging in forests reduces KDE overfitting in RFCDE.

Effect of using union families We study CaDET with a union family, containing
the unconstrained, uncorrelated, and symmetric variants of the Gaussian and
log-Gaussian families. As the three variants of the Gaussian and log-Gaussian
families (each) are nested, the uncorrelated and symmetric families never uniquely
maximize sample likelihood. We employ AIC regularization from (16) to incentivize
the uncorrelated and symmetric families.
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Gaussian MSE Gaussian Union RFCDE
Dataset n dim(X) dim(Y) ACLL Size ACLL Size ACLL Size ACLL Size

air-quality 6287 11 4 -13.159 2450 -12.493 2338 -12.241 1990 -15.078 25144
anneal-U 763 26 6 -24.573 513 -21.718 459 -20.342 156 -29.114 4578
australian 586 12 3 -8.703 135 -8.640 135 -7.630 66 -9.516 1758
auto 174 21 5 -28.449 100 -28.490 100 -28.163 50 -29.073 870
balance-scale 531 1 4 -6.168 42 -6.168 42 -6.168 36 -6.704 2124
breast 594 6 4 -6.001 210 -5.622 238 -5.408 120 -7.070 2376
breast-cancer 243 7 3 -9.646 63 -9.646 63 -9.176 30 -9.593 729
cars 333 7 2 -5.278 35 -5.277 35 -5.250 29 -5.700 666
cleve 258 9 5 -19.174 100 -19.040 100 -18.682 50 -19.518 1285
crx 586 11 5 -24.655 260 -24.627 300 -21.487 130 -24.232 2930
diabetes 653 2 7 -25.882 595 -25.802 595 -25.905 343 -25.766 4564
german 850 17 4 -17.621 350 -18.434 294 -17.856 176 -17.561 3400
german-org 850 22 3 -11.870 189 -12.167 207 -11.821 114 -11.832 2550
heart 230 8 6 -21.626 135 -21.764 135 -21.304 60 -21.603 1374
hypothyroid 2689 22 4 -13.569 994 -12.765 1078 -12.759 672 -13.190 10752
iris 128 1 4 -3.025 14 -3.025 14 -3.025 14 -3.650 508
winequality 5222 5 8 -6.821 6820 -6.691 6468 -6.867 4368 -8.340 44176

Mean -14.484 765 -14.257 741 -13.766 494 -15.149 6458
# Optimal 2 1 3 1 14 17 2 0

Table 2 Comparison between Gaussian-CaDET with MSE impurity, Gaussian-CaDET, and
AIC-regularized union-CaDET over UCI datasets. For each dataset, we provide training set size
n, feature count dim(X ), and label count dim(Y). Test set ACLL and model size are presented
for each. Trees are trained with MSL 55, and data are divided 85:15 train:test. Means for ACLL
and model size of each algorithm, and the number of times each algorithm is optimal (w.r.t.
ACLL or model size) follow tabulated results.

In the rightmost six columns of Table 2, we compare union-CaDET to Gaussian-
CaDET and RFCDE. The union-CaDET trees significantly outperform the
Gaussian-CaDET trees, as measured by ACLL, while maintaining significantly
smaller model sizes. CaDET produces smaller models than RFCDE, which averages
6458 distribution parameters per tree, while producing less accurate (as measured
by ACLL) models. The average training-test ACLL gap for the CaDET models
is ≈ 0.9, but for RFCDE it is ≈ 0.1. We thus claim that RFCDE is underfitting,
and that its low training-set ACLL is due to poor split selection, since if all else
were equal, the KDE at RFCDE leaves should be able to overfit much more than
CaDET’s parametric estimates.

7 Conclusion

We present CaDET, a tree-based algorithm for parametric CDE. CaDET learns
interpretable models that produce interpretable estimates. CaDET trees are built
by minimizing the Empirical Cross-Entropy (ECE) impurity criterion. ECE is
specific to CDE, thus creates better splits that lead to better estimates than generic
regression impurity criteria. CaDET is a natural generalization of both MSE
regression trees and information-gain classification trees, and attains the same
training time and space complexities, under mild conditions. Our experimental
evaluation shows that CaDET is less prone to overfitting than existing CDE tree-
based algorithms, and can outperform them in both accuracy and interpretability.
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