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“[A]llain Gersten, Hopfen, und Wasser” — 1516 Reinheitsgebot

We present Bavarian, a collection of sampling-based algorithms for approximating the Betweenness Centrality
(BC) of all vertices in a graph. Our algorithms use Monte-Carlo Empirical Rademacher Averages (MCERAs), a
concept from statistical learning theory, to efficiently compute tight bounds on the maximum deviation of the
estimates from the exact values. The MCERAs provide a sample-dependent approximation guarantee much
stronger than the state of the art, thanks to its use of variance-aware probabilistic tail bounds. The flexibility of
theMCERAs allows us to introduce a unifying framework that can be instantiated with existing sampling-based
estimators of BC, thus allowing a fair comparison between them, decoupled from the sample-complexity results
with which they were originally introduced. Additionally, we prove novel sample-complexity results showing
that, for all estimators, the sample size sufficient to achieve a desired approximation guarantee depends
on the vertex-diameter of the graph, an easy-to-bound characteristic quantity. We also show progressive-
sampling algorithms and extensions to other centrality measures, such as percolation centrality. Our extensive
experimental evaluation of Bavarian shows the improvement over the state-of-the art made possible by the
MCERAs (2–4x reduction in the error bound), and it allows us to assess the different trade-offs between sample
size and accuracy guarantees offered by the different estimators.
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1 INTRODUCTION
A centrality measure [12] assigns to each vertex or edge in a graph a score that quantifies the
importance of that vertex/edge. Many measures and algorithms for them have been introduced in
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the literature, from simple ones like degree, to sophisticated ones based on shortest paths, such as
closeness centrality [6] and betweenness centrality [3, 32], which is the focus of this work.

Informally, Betweenness Centrality (BC) quantifies the importance of a vertex/edge I as the
fraction of all Shortest Paths (SPs) in the graph that go through I (see (1)). It is a measure of
robustness, in addition to being a centrality measure [11]: if a vertex/edge with high BC is removed
from the graph, then the SPs between many pairs of vertices will change, or even cease to exist. BC
has many practical applications, from community detection [53], to the study of the resilience of
the electrical grid [48], to genomics [34].

Computing the exact BC of every vertex/edge in a graph� = (+ , �) is quite expensive. Brandes’s
algorithm (BA) [18], the state of the art, takes time O(|+ | |� |) if � is unweighted, and O( |+ | |� | +
|+ |2 log|+ |) otherwise. These running times are too slow to be practical on even moderately-sized
networks. For this reason, soon after the exact algorithm had been introduced, sampling-based ap-
proximation algorithms were proposed [20, 39]. Approximate BC scores are sufficient and acceptable
in practice when they come with strong guarantees on their quality, i.e., with an upper bound on
the maximum deviation of any BC estimate from its unknown exact value (i.e., a bound on the
maximum estimation error). Good estimates are particularly valuable when the graph evolves in
a fully-dynamic way, that is, when edges and vertices are arbitrarily inserted and removed over
time. In this setting, computing the exact BC of each vertex/edge is not only expensive, but also
has limited value, as these scores continuously change. High-quality approximations are sufficient,
and are easy to maintain after updates to the graph.

Sampling-based algorithms exhibit an inherent trade-off between the sample size and the quality
guarantee: the larger the sample, the smaller the upper bound on the maximum deviation is, i.e., the
better the guaranteed quality of the estimates. Improved characterization of this trade-off allows for
stronger quality guarantees. Previous works studying the trade-off [13, 20, 21, 33, 60, 61] (see Sect. 2
for an in-depth discussion of these and other relevant contributions) also often introduce novel
sampling-based estimators for BC, and limit the characterization of the trade-off to a single estimator,
usually the one they propose. Different estimators draw samples from different populations (e.g.,
single vertices, pairs of vertices, or single SPs, see Sect. 3.2), so it is not possible to fairly compare
the quality guarantees they offer, i.e, the different characterizations of the sample-size-vs.-accuracy-
guarantee trade-off.While interesting from theoretical and practical points of view, this proliferation
of estimators does not help users in choosing which estimator to employ, and which characterization
gives the best “bang for the buck,” especially as there may be even better characterizations.

Contributions. We present Bavarian, a suite of sampling-based algorithms for approximating
the BC of all vertices in a large graph. Our contributions are the following.
• Bavarian is an algorithmic framework that can be instantiated with BC estimators (Sect. 3.2),

enabling the study of their different computational and statistical trade-offs (Sect. 6). This
unifying approach can be used for both static and progressive sampling algorithms (Sect. 5.2),
and extended to variants of BC, to percolation centrality, and to dynamic graphs (Sect. 5.3).
• Our analysis of Bavarian uses Monte-Carlo Empirical Rademacher Averages (MCERAs)

(Sect. 3.3), a key concept from statistical learning theory [67]. The variance-aware tail bounds
(Thm. 3.1) for the MCERAs exploit the low variance of BC functions (Sect. 3.3), resulting in a
tight characterization of the sample-size-vs.-accuracy trade-off, and thus in better quality
guarantees at smaller sample sizes than previously possible.
• Our unifying framework, and the use of the MCERAs, allows us to show that, for every

estimator, the sample size sufficient to (probabilistically) obtain a desired accuracy depends
logarithmically on the vertex diameter (Sect. 5.1), a characteristic and easy-to-bound quantity
of the graph. Previous estimator-specific bounds have logarithmic dependencies on the size
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of the largest connected component [61], or on the number of vertices [20], which are much
larger than the vertex diameter: in many realistic network models, the diameter (and the
vertex-diameter) is proportional to the logarithm of these quantities. This result generalizes
one by Riondato and Kornaropoulos [60, Coroll. 1] for the specific estimator they introduce.
It is not just of theoretical interest: we use it to develop sample schedules for practical
progressive sampling algorithms (Sect. 5.2).
• Our experimental evaluation (Sect. 6) shows a 2–4x improvement in the quality guaran-

tee offered by Bavarian over the state-of-the-art, which is made possible by the use of
the MCERAs. We also analyze the behavior of different estimators for BC, in the first fair
comparison enabled by our unifying framework.

Some proofs are deferred to App. A.1, and additional experimental results are in App. A.2.
The present article extends the conference version [26] in multiple ways, including:

• we deeply streamlined the proofs of the sufficient sampling size, getting rid of a complex
concept (SP-enforcing families) that is no longer needed, and instead using Jensen’s inequality
and other basic probability concepts to show the relationship between the Rademacher
averages of the different estimators;
• we discuss a different approach to compute the :-MCERA, based on matrix multiplication,
which reveals additional interesting properties of the BC estimators;
• we introduce a novel adaptive-sampling variant of the algorithm, which takes a best-effort

approach in tuning the sample size, to obtain the desired quality guarantees as fast as possible;
• we show results on the relationships between the wimpy variances of the function families

for the different estimators, and also on the variances of the estimators themselves, extending
and improving results by Riondato and Kornaropoulos [60, Lemma 9];
• we perform an experimental evaluation of the progressive sampling algorithm, and report the

results, showing that it frees the user from having to choose a fixed sample size in advance,
so they can instead express their desired quality guarantees; and
• we present all the proofs of our theoretical results, after refining their hypotheses, to

strengthen them as much as possible. We also give examples to make the most important
concepts concrete.

2 RELATEDWORK
We now discuss the contributions on BC most related to ours. BC was originally introduced in
sociology [3, 32], and many variants have been developed since then [14, 19, 29, 45, 52, 54, 56]. In
this work, we focus on vertex BC, but the versatility of our approach allows us to tackle other
variants (see Sect. 5.3).

The first efficient algorithm for BC [18], known as Brandes’ algorithm (BA), uses an ingenious
recursive formulation to obtain the BC of all vertices in time proportional to = Single-Source-
Shortest-Paths (SSSP) computations in an =-vertex graph. The time complexity on unweighted
graphs is O(=2 + =<) where< is the number of edges in the graph, and becomes O(=< + =2 log=)
on weighted graphs. Despite the remarkable efforts to make this algorithm more scalable in
practice [30, 59, 62], its cost is still excessive even for non-humongous graphs. Approximation
algorithms [9, 10, 13, 20, 21, 33, 39, 51, 60, 61] and heuristics [4, 31, 49, 50] propose to address this
shortcoming. We focus here on works that offer guarantees on their output (see also Sect. 3.2). We
refer the reader to [60, Sect. 2] and [12] for an in-depth discussion of the heuristics.

All approximation algorithms for BC are based on random sampling, but they draw samples
from different populations according to different distributions, compute the approximations using
different estimators, and their authors use different approaches to analyze the quality guarantees
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they offer. Our work has two goals: (1) present Bavarian, a unifying framework that can be
instantiated with all these estimators, thus allowing a fair comparison between them; and (2) use
the MCERAs to obtain tighter quality guarantees and better dependency on graph properties for
all estimators.

Brandes and Pich [20] and independently Jacob et al. [39] present the first sampling-based ap-
proximation algorithm for computing high-quality estimates of the BC of all nodes. Their estimator
is closely related to the inner workings of BA (see Sect. 3.2), and the analysis of the sample size
vs. quality trade-off uses Hoeffding’s bound [38] and the union bound, thus it is quite loose. Geis-
berger et al. [33] present a slight refinement of the estimator, but the sample size is unchanged.
Chehreghani et al. [21] present a sampling-based algorithm for estimating the BC of a single node.
Extending the guarantee to all nodes via union bound results in the same sample size as the
algorithm by Jacob et al. [39] and Brandes and Pich [20].

Riondato and Kornaropoulos [60] propose a new estimator (see Sect. 3.2) and an approximation
algorithm whose sample size is obtained using an upper bound to the Vapnik-Chervonenkis
dimension [68] of the problem. This quantity depends on the vertex-diameter of the graph (the
largest number of vertices on a shortest path). The resulting sample size is therefore much smaller
than the one derived by previous works, while still being the result of a worst-case analysis.
Bergamini and Meyerhenke [9] show how to better approximate the vertex-diameter on directed
networks, but they use the same sample size, as does, in the worst case, the progressive-sampling
algorithm by Borassi and Natale [13].

Riondato and Upfal [61] introduce another novel estimator (see Sect. 3.2) and an approximation
algorithm whose analysis uses Rademacher averages [43], another core concept of statistical
learning theory. Rademacher averages more tightly characterize the trade-off between sample
size and approximation quality using only sample-dependent quantities, rather than relying on
graph-dependent (i.e., population-dependent) properties. As a result, the same approximation quality
can be obtained with much smaller samples than before. Our work does not use deterministic upper
bounds to the Rademacher averages. Rather, we leverage Monte-Carlo estimation (see (7)) and
variance-aware tight deviation bounds (see Thm. 3.1), to achieve both aforementioned goals.

Recently, Fan et al. [31] used graph neural networks to approximate the top-: nodes with highest
BC, but without guarantees on the output. As argued in Sect. 1, quality guarantees are important,
if not necessary, to make approximate solutions acceptable.

Modern graphs often arise from dynamic processes, in which vertices and edges are continuously
added and/or removed. Many works look at how to compute and update BC, either exactly or
approximately, after an update or batch of updates [9, 10, 35, 37, 41, 46, 58, 61, 69]. We discuss how
to adapt our results to the fully-dynamic case in Sect. 5.3.

The MCERA has received relatively little attention until now, despite being defined, in a less
general form, a while ago [5]. De Stefani and Upfal [28] use it for adaptive data analysis, Cousins
and Riondato [25] present refined convegence bounds for it, and Pellegrina et al. [55] use it for
pattern mining. All these scenarios and results are very different from the one we consider, and the
approaches taken by these works cannot be applied for betweenness centrality approximation.

3 PRELIMINARIES
We now state definitions and theorems used throughout the work. For the reader’s convenience,
we report the most used notation in Table 1.

3.1 Betweenness Centrality
Let� = (+ , �) be a graph. The edges may be directed or undirected and may have non-negative
weights. We denote with = = |+ | the number of vertices in � . For ease of discussion, we assume
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Table 1. Most important notation and abbreviations used in the paper.

Symbol Name / Meaning

� = (+ , �) Graph with |+ | = = vertices

? = (D, I1, . . . , I |? |−2, E) Path from vertex D to vertex E ; the vertices in this ordered sequence
are all distinct

int(?) Set of nodes internal to a path ? , i.e., {I1, . . . , I |? |−2}
ΓDE Set of Shortest Paths (SPs) from D to E

fDE Number of SPs from D to E , i.e., |ΓDE |
b(F) Betweenness Centrality (BC) of vertexF ∈ +

A Generic approach for estimating the BC through sampling

DA,� �-dependent domain from which A draws samples

cA Probability distribution over DA,� from which A draws samples

< Sample size

S Collection of< independent samples in DA,� drawn from cA

b̃A,S (F) Estimate of the BC of vertex/edgeF using A on S (see (2))

F Family of functions from a domain D to [0,1]

SD(F ,S) Supremum Deviation (SD) of F on S (see (6))

: Number of Monte-Carlo trials

� = {,1, . . . ,,<} Bag of< i.i.d. :-dimensional Rademacher vectors

R̂:
< (F ,S,�)

:-trials Monte-Carlo Empirical Rademacher Average (:-MCERA) of F
on S using � (see (7))

v, V (Raw) Wimpy variance of F and empirical (raw) wimpy variance of F
(see Sect. 3.3)

the graph to be readily available, so that operations such as sampling a vertex or a pair of vertices
uniformly at random is easy. When this assumption does not hold, one can use appropriate methods
to draw these samples [22, 23, 42]. We define a path ? from a vertex D to a vertex E as an ordered
sequence of distinct vertices (D, I1, . . . , I |? |−2, E). Given a path ? between vertices D and E , a vertex
F is internal to ? if and only ifF ≠ D,F ≠ E , andF ∈ ? . We denote the set of vertices internal to a
path ? as int(?). The length of a path ? is |? | − 1 if the edges do not have weights and is the sum
of the weights of the edges (D, I1), (I1, I2), . . . , (I |? |−2, E) otherwise, i.e., an unweighted graph is
essentially a weighted graph with all edge-weights equal to one. Any path ? from D to E that has
minimal length among all the paths from D to E is known as a Shortest Path (SP). For any ordered
pair of distinct vertices (D, E), let ΓDE denote the set of SPs from D to E . To avoid having to repeatedly
mention how we handle the special case of E being unreachable from D (i.e., when there is no path,
and therefore no SP, between them), we say that in this case ΓDE contains only a special empty path
?D,E = (D, E), i.e., a “path” with no internal vertices. We define fDE � |ΓDE |, and we use fDE (F) to
denote the number of SPs from D to E thatF is internal to.
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The Betweenness Centrality (BC) b(F) of a vertexF ∈ + is [3, 32]

b(F) � 1
=(= − 1)

∑
(D,E) ∈+ ×+

D≠E

fDE (F)
fDE

(∈ [0, 1]) . (1)

These and other notations are summarized in Table 1. An example graph, with associated BC values,
from [60, Fig. 1], is shown in Fig. 1.

a

h

b

g f e

c d

Vertex G a b c d e f g h

b(G) 0 0.250 0.107 0.036 0.071 0.178 0.250 0

Fig. 1. Example of BC from [60, Fig. 1].

There exist many variants of BC [14, 19, 29, 45, 52, 54, 56]. For ease of presentation, we focus on
the one for vertices, but our results can be extended to many of these variants (see Sect. 5.3).

Computing the exact BCs for all vertices is expensive [18] (see also Sect. 2). In this work, we
are interested in estimating the BCs of all vertices, using different “approaches” (see Sect. 3.2) that
offer probabilistic guarantees on the quality of the estimates that they compute. All approaches
rely on random sampling: given the graph � , a user-defined sample size< > 0 and a user-defined
acceptable failure probability X ∈ (0, 1), approach A creates a sample S = {G1, . . . , G<} by drawing
< independent samples from an approach-specific, �-dependent, population DA,� according to an
approach-specific distribution cA over DA,� (for ease of notation, we will often drop � when it
is clear from the context, and just use DA). A uses S to compute the estimate b̃A,S (F) for every
vertexF (for ease of notation we will often drop S when it is clear from the context, and just use
b̃A (F)). For any approach A we consider, and anyF ∈ + , the estimate b̃A,S (F), is the sample mean
over S of a function 5F defined over DA,� , i.e.,

b̃A,S (F) =
1
<

∑
G∈S

5F (G), (2)

which is unbiased, i.e., its expectation w.r.t. the choice of S is the exact BC b(F). Also, for any
approach A and any sample size < > 0, there is a function epsA,< (·) from D<

A × (0, 1) to the
non-negative reals R+ such that, with probability at least 1 − X over the runs of A with the same
inputs � ,<, and X , all estimates are within epsA,< (S, X) from their exact value. In other words, it
holds

Pr
(
∃F ∈ + s.t.

���b(F) − b̃A,S (F)
��� > epsA,< (S, X)

)
< X . (3)

One of our goals is to compare epsA1,<
(·), epsA2,<

(·), …, for different approaches A1, A2, …, as they
give different characterizations of the trade-off between sample size and accuracy guarantees.

3.2 BC Estimation
We now review existing approaches for BC estimation. For each approach A, we define a domain
DA, a family FA of functions from DA to [0, 1], and a probability distribution cA over DA.
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The RK estimator. Riondato and Kornaropoulos [60] introduce a BC estimator that is tailored to
their use of VC-dimension [68] for the analysis of the sample size sufficient to obtain a high-quality
estimate of the BC of all nodes. The domain Drk is the set of all shortest paths between all pairs of
vertices in the graph � , i.e.,

Drk �
⋃

(D,E) ∈+ ×+
D≠E

ΓDE .

Let ?DE ∈ Drk be any SP fromD to E ≠ D. The distribution crk overDrk assigns to ?DE the probability
mass

crk (?DE) �
1

=(= − 1)fDE
.

Riondato and Kornaropoulos [60] show an efficient sampling scheme to draw independent samples
from Drk according to crk. The cost of drawing a sample is essentially that of a truncated SSSP
computation from D to E . The family Frk of functions contains one function 5F : Drk → {0, 1} for
each vertexF , defined as

5F (?) � 1int(? ) (F) �
{
1 ifF ∈ int(?)
0 otherwise

.

The same estimator is used by Borassi and Natale [13] for a progressive sampling algorithm for BC
estimation.

The ABRA estimator. The ABRA algorithm [61] uses an estimator defined over the domain

Dab � {(D, E) ∈ + ×+ : D ≠ E},

i.e., over all pairs of distinct vertices. The distribution cab is uniform over Dab; thus sampling from
it is easy, per our assumptions. The family Fab contains a function 5F for each vertexF , defined as

5F (D, E) �
fDE (F)
fDE

∈ [0, 1] . (4)

Given (D, E) ∈ Dab, one can compute the value of 5F (D, E) for each F in time proportional to
performing a truncated SSSP from D to E .

The BP estimator. Jacob et al. [39], and independently Brandes and Pich [20] introduce a BC
estimator that is closely related to how Brandes [18]’s algorithm computes the exact BC of all nodes.
The domain Dbp is the set + of vertices in � , and the distribution cbp is uniform over this set. The
family Fbp contains one function 5F for each vertexF , defined as

5F (E) �
1

= − 1
∑
I≠E

fEI (F)
fEI

∈ [0, 1] . (5)

The value 5F (E) can be computed by performing a (full) SSSP computation from E , and then back-
tracking along the resulting SP DAG as in the exact BC algorithm BA by Brandes [18]. Geisberger
et al. [33] present a variant of the BP estimator to ameliorate some of its issues. The theoretical
guarantees of this variant and its computation are essentially the same as the BP estimator, and the
same observations we make for BP can be extended to this variant.
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3.3 Bounding the Supremum Deviation
We now define the Supremum Deviation (SD), the Monte-Carlo Empirical Rademacher Average
(MCERA), and the wimpy variance, and present important results using them. We tailor the
definitions to our settings, and refer to the books by Shalev-Shwartz and Ben-David [63, Ch. 26]
and Boucheron et al. [16, Ch. 11-13] for in-depth discussions.

Let F be a family of functions from a domain D to [0, 1].1 Let c be a distribution over D,
and< be a positive integer. Given a bag (sample) S = {G1, . . . , G<} of< samples from D drawn
independently according to c , the Supremum Deviation (SD) of F on S is defined as

SD(F ,S) � sup
5 ∈F

�����Ec [5 ] − 1
<

∑
G∈S

5 (G)
����� . (6)

The SD is the key concept in the study of empirical processes [57]. Sample-dependent quantities,
such as the popular Empirical Rademacher average (ERA) [43], can be used to derive probabilistic
upper bounds to the SD. In this work, we use a Monte-Carlo estimator of the ERA, first introduced
by Bartlett and Mendelson [5]. For : ≥ 1, let � = {,1, . . . ,,<} be a bag of< i.i.d. :-dimensional
Rademacher vectors, i.e., vectors whose entries are drawn independently and uniformly from
{−1, 1}. The :-Trials Monte-Carlo Empirical Rademacher Average (:-MCERA) R̂:

< (F ,S,�) of F on
S using � is

R̂:
< (F ,S,�) �

1
:

:∑
9=1

(
sup
5 ∈F

1
<

∑
G8 ∈S

,8, 9 5 (G8 )
)

. (7)

The expectation of the :-MCERA w.r.t. � is known as the Empirical Rademacher Average R̂< (F ,S),
and the expectation w.r.t. both S and � is known as the Rademacher Average R< (F , c), i.e., [43]

R̂< (F ,S) � ES
[
R̂:
< (F ,S,�)

]
, R< (F , c) � ES,�

[
R̂:
< (F ,S,�)

]
. (8)

These quantities are a cornerstone of statistical learning theory. While Rademacher averages control
the expected SD, the sharpest probabilistic bounds currently available use the :-MCERA and depend
on the variances of the functions in F . This fact is natural, since for each 5 ∈ F , the variance
V[5 ] controls SD({5 },S), asymptotically through the Central Limit Theorem, or via Bennett’s
inequality [7] with finite sample guarantees. The maximum variance of a function 5 ∈ F would
therefore control SD(F ,S). BC values are typically very small on large graphs, thus, for 5 in any of
the families from Sect. 3.2, it is reasonable to assume that V[5 ] � Ec

[
5 2

]
− (Ec [5 ])2 ≈ Ec

[
5 2

]
,

which is the raw variance of 5 ; henceforth all variances are raw unless otherwise noted. We define
the (raw) wimpy variance v, and its estimator V , as

v � sup
5 ∈F
Ec

[
5 2

]
and V � sup

5 ∈F

1
<

∑
G8 ∈S
(5 (G8 ))2 . (9)

Clearly both v and V depend on F , and the families introduced in Sect. 3.2 have different wimpy
variances, as we show in Thm. 4.1.

The following result (proof in App. A.1) shows how to use the :-MCERA to compute an upper
bound to the SD using only sample-dependent quantities. The reader is invited to compare this
result to [25, Thm. 4], wherein the authors derive a similar bound involving centralized variances
and Rademacher averages. We eschew such an approach here, as when all betweenness centrality
values are very small, which is a common case, centralization greatly complicates the analysis and
yields larger constant-factors, with negligible benefit.
1The results can be generalized to a generic co-domain [0,1 ] ⊂ R, but all methods from Sect. 3.2 have families mapping to
[0, 1], so we restrict to 0 = 0 and 1 = 1.
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Theorem 3.1. Let [ ∈ (0, 1), and define the quantities

W � V +
2 ln 5

[

3<
+

√√√(
ln 5

[√
3<

)2
+
2V ln 5

[

<
, (10)

d � R̂:
< (F ,S,�) +

2 ln 5
[

3:<
+

√
4V ln 5

[

:<
,

A � d +
ln 5

[

3<
+

√√√(
ln 5

[

2
√
3<

)2
+
d ln 5

[

<
,

Y � 2A +
ln 5

[

3<
+

√
2 (W + 4A ) ln 5

[

<
, (11)

Then, with probability at least 1 − [ over the choice of S and �, it holds that

SD(F ,S) ≤ Y .

As can be seen from the proof, this result consolidates several probabilistic upper bounds:, with
probability at least 1 − [, it holds simultaneously that v ≤ W ,2R̂< (F ,S) ≤ d , and R< (F , c) ≤ A .
The apparent complexity of this result is due to the fact that it better characterizes the trade-off
between the sample size (and other properties of the sample) and the quality of the estimates,
by leveraging the empirical wimpy variance, i.e., the quantity V in (9). By looking at prior work
under the lens of variance, one can see that the Hoeffding+union bound and the VC-dimension
theorem, used respectively by Brandes and Pich [20] and Riondato and Kornaropoulos [60], assume
the worst-case possible variance, while the bound used by Riondato and Upfal [61] improves to
an exponential average over variances. These counting-based approaches are not sensitive to any
correlations between the quantities being estimated, whereas the :-MCERA is. This advantage is
one of the reasons why we choose to use this concept: this sensitivity is relevant to BC estimation,
as the scores of nearby vertices are strongly correlated, thus one should leverage these correlations
when computing the approximation quality guarantee. It holds

Y ∈ 2R̂:
< (F ,S,�) + O

(
ln 1

[

<
+

√
(v + R< (F , c)) ln 1

[

<

)
.

Each 5F used for BC estimation has codomain [0, 1], so v = maxF∈+ Ec
[
5 2F

]
≤ maxF∈+ Ec [5F] =

maxF∈+ b(F) (more refined bounds are discussed in Sect. 4.2). Thus, Y is, in some sense, “output-
sensitive,” as it depends on the maximum BC.

As F is fixed, the quantity on the r.h.s. of (11), is a function gF (S, [) depending only on S and
on [. For every approach A from Sect. 3.2, we can define the function epsA,< (·) used in (3) as

epsA,< (S, X) = gFA (S, X) .

4 STATISTICAL PROPERTIES OF BC ESTIMATORS
In this section, we show that the seemingly-disparate rk, ab, and bp estimators can be directly
contrasted in terms of their statistical properties, rather precisely via the wimpy variances and
Rademacher averages of the family of functions associated to them: we show that the raw variance
2Since we are considering functions with co-domain [0, 1], Popoviciu’s inequality allows us to use W = 1

4 when the r.h.s.
of (10) is larger than 1

4 . In general, any deterministic bound to the wimpy variance that is better than the r.h.s. of (10) can be
used. For ease of presentation, we do not further mention this fact.
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(and thus also centralized variance), the wimpy variance, as well as the Rademacher averages, of
the rk, ab, and bp estimators obey a decreasing relationship. In Sect. 4.2 we discuss the variance of
the three estimators.

Our starting point is the observation that the three estimators are equal (to the exact BC) in
expectation, and each simply commutes progressively less randomness from the inner sample to
the outer expectations. Each sampling algorithm may therefore be seen as a progressively more
random stochastic approximation of the exact algorithm. Intuitively, consider that, when run with
< = 1 samples, the relationship between these estimators can be expressed as

b(F) = ED∈+
[
EE≠D

[ =5F (D,E) (ab)︷            ︸︸            ︷
E?∈ΓDE

[
5F (?)

] ]︸                      ︷︷                      ︸
=5F (D ) (bp)

]
, (12)

where D is sampled uniformly at random from + , E is sampled uniformly at random from + \ {D},
and ? is sampled uniformly at random from ΓDE , or is ? = ∅ if D and E are not connected. Thus, each
estimator computes a conditional expectation as a proxy for the (unconditional) expectation of the
betweenness centrality; bp conditions only on the first vertex D, ab conditions additionally on the
second vertex E , and rk further conditions on a randomly sampled shortest path ? ∈ ΓDE .

We defer the proofs of the results in this section to App. A.1.

Theorem 4.1. For the raw variances of the three estimators it holds

∀F ∈ + :
(
b(F)

)2 ≤ Ecbp

[
(5F (D))2

]
≤ Ecab

[
(5F (D, E))2

]
≤ Ecrk

[
(5F (?))2

]
= b(F) .

The same relationship extends to the wimpy variances of the families of each estimator.

The raw variance of the rk family is completely specified as in the above theorem (rightmost
equality), because the functions in this family are binary. For the other families, we show more
informative bounds in Sect. 4.1.

Theorem 4.2. For the Rademacher averages of the three estimators it holds

R< (Fbp, cbp) ≤ R< (Fab, cab) ≤ R< (Frk, crk) .

We use Thm. 4.2 in Sect. 5.1, to show how to adapt upper bounds to the sample complexity of rk
to that of ab and bp, improving existing bounds using, respectively, pseudodimension [61, Sect.
4.2] and the union bound [20].

Theorems 4.1 and 4.2 may seem to suggest that bp, having the lowest wimpy variance and
Rademacher average, should be preferred over the other two estimators, but our experimental
results will show a slightly different picture.

4.1 Refined Bounds on Wimpy Variances
We now show refined bounds for the wimpy variances of the families of functions corresponding
to the ab and bp estimator (see Thm. 4.1 for a complete characterization of the wimpy variance of
the rk family).

Lemma 4.3. For anyF ∈ + , it holds

b(F)Ecab

[
fED (F)
fED

����fED (F) > 0

]
≤ Ecab

[
(5F (D, E))2

]
≤ b(F)max

E,D≠E

fED (F)
fED

.

The lower bound improves over the naïve bound (b(F))2 showed in Thm. 4.1. The expectation
in it is an interesting and “natural” statistic: it essentially is the centrality ofF when considering
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only the pairs of vertices E and D that have at least one SP between them that goes throughF . The
upper bound improves over the naïve b(F) upper bound, and again depends on properties of the
graph, although the multiplier is likely often going to be 1.

We now show a similar result for the functions in the bp family.

Lemma 4.4. For anyF ∈ + , let E be drawn uniformly at random from+ , and D be drawn uniformly
at random from + \ {E}, it holds

b(F)Ecbp

[
ED |E

[
fED (F)
fED

] ����ED |E [
fED (F)
fED

]
> 0

]
≤ Ecbp

[
(5F (E))2

]
≤ b(F)max

E
ED |E

[
fED (F)
fED

]
.

The bounds again improve over the corresponding naïve bounds. The multiplier of b(F) on the
l.h.s. can be thought as the betweenness ofF when considering only the SPs from source vertices E
that have at least one SP (to any destination) that goes throughF . The multiplier to b(F) on the
r.h.s. is strictly less than 1 as long as there is not a vertex E s.t. all SPs from E to any other vertex go
through F , in which case E would be the maximizer. In unweighted graphs, such a vertex E can
only be a vertex of (out-) degree 1 in the neighborhood ofF .

4.2 Variance of the Estimators
An established way to compare unbiased estimators for the same quantity is to compare their
variances, which also gives information about the (expected) Mean Squared Error of the estimators.
Riondato and Kornaropoulos [60, Lemma 9] show that the variance of the bp estimator is not
greater than the variance of the rk estimator, i.e., V[b̃bp (F)] ≥ V[b̃rk (F)]. In this section, we use
Lemmas 4.3 and 4.4 to improve their analysis to show lower bounds to the ratio of the variances of
any two of the three estimators for BC.

Lemma 4.5. For anyF ∈ + , it holds

V[b̃ab (F)]
V[b̃rk (F)]

≤ max
E,D≠E

fED (F)
fED

(≤ 1) .

The proof can be found in App. A.1. The following two results can be proved essentially in the
same way.

Lemma 4.6. For anyF ∈ + , it holds

V[b̃bp (F)]
V[b̃rk (F)]

≤ max
E∈+
ED |E

[
fED (F)
fED

]
(≤ 1) .

Lemma 4.7. For anyF ∈ + , it holds

V[b̃bp (F)]
V[b̃ab (F)]

≤ 1 .

Thus, bp has lower variance than the other two, and ab has lower variance than rk. These facts
are not entirely surprising, because, informally, bp “collects more information” per sample than
the others, thus its estimations, for the same sample size, are more accurate. Nevertheless, it is
important to remark that each estimator uses samples from a different population (see Sect. 3.2),
and drawing the samples from the different population requires a different amount of work. The
comparison, while meaningful, hides these aspects. In our experiments, we evaluate how these and
other properties show up in practice.
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5 THE Bavarian FRAMEWORK
We now present Bavarian, our unifying algorithmic framework for BC estimation. Bavarian uses
the :-MCERA and the variance-aware tail bound from Thm. 3.1 to compute the sample-dependent
approximation quality, and can be instantiated with any of the estimators discussed in Sect. 3.2.
The pseudocode is shown in Alg. 1.

Algorithm 1: Bavarian
Input: method A, graph � , sample size<, failure probability X , Monte-Carlo trial count :
Output: (�̃, Y) with the properties presented in Thm. 5.1

1 sums← map from + to vectors of size : + 2
2 foreach E ∈ + do sums[E] ← (−∞, . . . ,−∞︸         ︷︷         ︸

:

, 0, 0)
3 for 8 from 1 to< do
4 B8 ← drawSample(A, �)
5 / ← getFunctionValues(A, B8)
6 ,8 ← drawRademacher(:)

7 foreach (E, 5E (B8 )) ∈ / do
8 sums[E] ← sums[E] + 5E (B8 ) · (,8,1, . . . ,,8,: , 5E (B8 ), 1)

9 �̃ ← {(E, sums[E] [: + 2]/<) : E ∈ + }
10 Y ← getEpsilon(sums,<, X)
11 return (�̃, Y)

The input parameters to Bavarian are: a BC estimation method A ∈ {rk, ab, bp}, a graph � , a
sample size< > 0, a failure probability X ∈ (0, 1), and the number : of Monte-Carlo trials for the
:-MCERA (see Sect. 5.1 for a discussion of how to choose< and :). The output is a pair (�̃, Y),
where �̃ is a set of pairs (E, b̃A (E)) for each E ∈ + , with b̃A (E) being the estimate of b(E) using A,
and Y ∈ (0, 1) is the probabilistically-guaranteed accuracy as specified in the following theorem
(proof deferred to after the description of the algorithm).

Theorem 5.1. With probability at least 1− X (over the runs of the algorithm), the pair (�̃, Y) is such
that

max
E∈+

���b̃A (E) − b(E)
��� < Y .

Bavarian first creates a map sums from+ to vectors3 of size : + 2 (line 1 of Alg. 1), initialized to
contain one key E for each E ∈ + . The vector sums[E] has : + 2 elements, with the first : elements
initialized to −∞ and the last two elements initialized to zero (line 2). We explain the role of this
map below. The algorithm then enters a loop which is repeated for< iterations (lines 3–8). At
the beginning of iteration 8 (line 4), Bavarian draws one element B8 from DA according to the
distribution cA. For example, if A is ab, the algorithm would draw a pair (D, E) of distinct vertices
uniformly among all such pairs. It then uses the function getFunctionValues to compute, using
the procedure specified by A, the set

/ = {(F, 5F (B8 )) for eachF ∈ + s.t. 5F (B8 ) ≠ 0} .

For example, if A is ab, / would contain pairs (F, fDE (F)/fDE) for all and only the vertices F
internal to a SP from D to E , where B8 = (D, E) is the population element drawn at this iteration.
Together with a vector ,8 of : independent Rademacher variables (line 6), the set / is used to
3We use 1-based indexing for vectors, i.e., the first element has index 1.
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update the map sums to maintain the following invariant: at the end of every iteration 8 of the loop,
it must hold for each E ∈ + that

sums[E] [I] =


∑8

9=1 , 9,I 5E (B 9 ) for I = 1, . . . , :∑8
9=1 (5E (B 9 ))2 for I = : + 1∑8
9=1 5E (B 9 ) for I = : + 2;

(13)

After< iterations of the for loop (lines 3–8), the algorithm obtains the BC estimate b̃A (E) for
each vertex E as b̃A (E) = sums[E] [: + 2]/<, and stores them in the set �̃ (line 9). The probabilistic
accuracy guarantee Y is computed by the function getEpsilon (line 10). This function receives as
input all the necessary parameters to compute the value on the r.h.s. of (11): for each E ∈ + , it holds
sums[E] [: + 1] = ∑:

8=1 (5E (B8 ))2 = <V , and sums[E] [I] = ∑:
8=1 _8I 5E (B8 ) for each I = 1, . . . , : . The

output of the algorithm is then (�̃, Y). We can now prove Thm. 5.1.

Proof of Thm. 5.1. Thanks to the maintained invariant (13), each estimate b̃A (E), for some E ∈ + ,
is a sample mean (over the sample S = {B1, . . . , B<}) of a specific function 5E , and an unbiased
estimate of the exact BC b(F) = E [5E]. Additionally, the invariant (13) ensures that all the quantities
needed to compute Y as in (11) are available, and thus the thesis follows from Thm. 3.1. �

Computing the :-MCERA with matrix multiplication. As described, the algorithm computes the
:-MCERA by maintaining the vectors sums (see (13)) throughout its execution, and at the end, it
finds the maximum, over the vectors, of each of the first : entries, sums these maxima, and divides
the obtained sum by<: . This approach is the easiest to describe and to implement, but we now
give an alternative way of computing the :-MCERA based on matrix multiplication, which shines
additional light on the properties of the different estimators.

Let ! be the < × : matrix whose 8-th row is the Rademacher vector ,8 , i.e., !8, 9 = ,8, 9 , and
let, be the = ×< matrix such that,8, 9 � 5E8 (B 9 ), where E1, . . . , E= is an arbitrary labeling of
the vertices. The matrix product ( �, × ! is a = × : matrix whose 8-th row corresponds to the
first : entries of the vector sums[E8 ]. Thus, to obtain the :-MCERA, it is sufficient to sum the
columnwise maxima of ( , and divide the result by<: . The approach we described when presenting
the algorithm essentially performs naïve matrix multiplication, but by instead computing, during
the loop, and sampling ! just before computing Y, it is possible to use efficient matrix multiplication
algorithms (e.g., Strassen’s [66], without going into theoretically-superior but impractical “galactic”
algorithms [2]) to obtain the entries of the sums vectors needed to compute the :-MCERA.

A natural question to ask given this matrix multiplication interpretation is, “How does the
computational complexity behave as a function of :?” In particular, our algorithm with naïve matrix
multiplication exhibits O(=<:) behavior, which suggests that there is a steep cost to increasing
: . However, by splitting the computation of ( = , × ! into O(=</:2) multiplications of : × :
matrices, computing each with Strassen’s algorithm, and aggregating the results, we obtain a time
complexity of O(=<:0.8074). This implies a much smaller cost to increasing : , suggesting that the
intrinsic complexity of the :-MCERA computation is not heavily dependent on : , which is of
interest beyond the betweeness centrality problem we study in this work.

It is also interesting to reflect on how to represent the matrix ( for different estimators. Consider
for example the bp estimator, and let � be an undirected connected graph and E8 be a node with
degree greater than one. The value 5E8 (B 9 ), where B 9 is a sampled vertex in bp, always obeys
5E8 (B 9 ) > 0, except when E8 = B 9 , thus ( is usually dense for bp. In contrast, for the other estimators,
5E8 (B 9 ) is often zero. For example, in the case of rk, 5E8 (B 9 ) = 0 for a sampled SP B 9 whenever
E 9 ∉ int(? 9 ). Thus, for the rk estimator, and to a lesser extent the ab estimator, a sparse representation
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for ( is more efficient. While matrix multiplication is typically studied in the dense setting, simple
recursive methods like Strassen’s algorithm apply equally to sparse matrix multiplication.

In conclusion, an efficient implementation of Bavarian may consider the use of matrix multipli-
cation for computing the :-MCERA, choosing the appropriate representation for the matrices. As
always in practice, only appropriate measurements on actual machines and representative inputs
can guide this kind of optimization.

5.1 Choosing the parameters< and :

The sample size < and the number : of Monte-Carlo trials are important input parameters of
Bavarian. We now discuss how to choose< as a function of a user-specified desired approximation
quality Ȳ ∈ (0, 1), and in Sect. 5.1.1 we discuss the choice of : . These results are not just of theoretical
interest: we use them in a progressive-sampling variant of Bavarian in Sect. 5.2.

Minimum sample size. We start by deriving an upper bound to the minimum sample size <
needed for the approximation quality guarantee Y returned by the algorithm to be no-greater than
a user-desired upper bound Ȳ. From Thm. 3.1 it is evident that Y decreases as R̂:

< (F ,S,,) and V

from (9) decrease, and as< and : increase. We here make the assumption that the zero-constant
function belongs to F , which is true whenever there is a vertex with BC zero, which is a quite
common situation in practice, as it happens, among other cases, when the graph is undirected and
there is a vertex of degree one, or when the graph is directed and there is a node with only outgoing
edges or only incoming edges. Consider a procedure zeroEpsilon(<, : , [) that, given<, : , and [,
computes Y as in Thm. 3.1 assuming that R̂:

< (F ,S,,) = 0 (which is the minimum possible because
of the above assumption4) and V = 0, and let

m∗ (:, [, Ȳ) = min{< > 0 : zeroEpsilon(<, : , [) ≤ Ȳ} . (14)

Fact 1. Bavarian would never return a pair (�̃, Y) with Y ≤ Ȳ if the passed sample size< is smaller
than m∗ (:, [, Ȳ) (and the other input parameters are : and X = [).

Computing m∗ (:, [, Ȳ) is easily done with an unbounded binary search on< using zeroEpsilon.
In Fig. 2 we show a plot of m∗ (:, 0.1, Ȳ) for different values of : and Ȳ.
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MC-trials k
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4000
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m
∗(

k,
0.

1,
ε̄)

Minimum sample size m∗(k , 0.1, ε̄)
ε̄ = 0.01
ε̄ = 0.02
ε̄ = 0.05

Fig. 2. Minimum sample size m∗ (:, 0.1, Ȳ).

For< ≥ m∗ (:, [, Ȳ), the algorithm may return Y < Ȳ, but the assumptions R̂:
< (F ,S,,) = 0 and

V = 0 require assumptions on the graph (mentioned above) and are so optimistic that it is almost
impossible for the algorithm to return Y < Ȳ for a sample size< not much larger than m∗ (:, [, Ȳ).
4Even without the assumption about the zero-constant function being in F, it holds, for all graphs, that R̂:

< (F, S,,) ≥ 0
with probability at least 1/2, so 0 would be a lower bound to this quantity with the same probability.
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Nevertheless, we leverage this property in Sect. 5.2, where we use (14) to derive a sample schedule
for a progressive-sampling variant of Bavarian.

Sufficient sample size. We now present a result connecting structural properties of the graph�

to a sample size sufficient for the algorithm to return an approximation quality bound Y not larger
than the user-desired Ȳ. In the general case, the sample size we show depends on the vertex-diameter
vd(�) of the graph� [60, Def. 1], i.e., themaximum number of vertices on a SP in� . On unweighted
graphs, the vertex diameter equals the diameter plus one, as vd(�) counts vertices, while the
diameter counts edges. On weighted graphs, the two quantities are not necessarily related. All that
is really needed is an upper bound to the vertex-diameter, which is easy to compute in either case
(see below). Riondato and Kornaropoulos [60, Coroll. 1] show that the Vapnik-Chervonenkis (VC-)
dimension [68] (see [63, Ch. 6] for an introduction) of the task of approximating BC using the rk
estimator is upper bounded by blog2 (vd(�) − 2)c + 1. They then use this result to derive a sufficient
sample size for their BC approximation algorithm. They also show that, when � is undirected
and there is no more than one SP between any pair of vertices in � , as is sometimes enforced on
road networks, the VC-dimension collapses to 3, independently from the vertex-diameter of the
graph [60, Lemma 2]. These results are limited to the rk estimator and do not make use of the
Rademacher averages, which could lead to a much smaller sufficient sample size (see Thm. 5.4). We
extend and adapt these results so that they can also be used to derive sufficient sample sizes for the
bp and ab estimators and when using Rademacher averages, as shown in the following theorem.

Theorem 5.2. Let 3 ≥ blog2 (vd(�) − 2)c + 1 or 3 = 3 if � is undirected and there is at most one
SP between any pair of vertices in � . Let

m∗ (Ȳ, [) � 1
Ȳ2

©«4�3 + 4
√
�3 ln 2

[

2
+
ln 2

[

2

ª®®¬ , (15)

where� is a universal constant [36, 44, 64]. When run with inputs< ≥ m∗ (Ȳ, [), and X = [, Bavarian
could return (�̃, Ȳ) rather than using the computed Y, and Thm. 5.1 would still hold.

Let us make some comments on Thm. 5.2 before delving in the proof. This result is not only
of theoretical interest. Rather, it has a double practical impact : (1) a better characterization of
the relationship between sample size and accuracy guarantee enables the user to better select
what sample size to use; and (2) pushing down the sample size sufficient to obtain a desired
approximation guarantee directly benefits progressive sampling algorithms (see Sect. 5.2), which
can now deterministically terminate earlier.

It is evident from the statement of Thm. 5.2 that an upper bound to the vertex-diameter of � is
sufficient to compute the sufficient sample size. In unweighted undirected graphs, it is possible to
obtain a multiplicative 2-approximation of the diameter (thus of the vertex-diameter) with one SSSP
computation from any source, by summing the lengths of the two longest SPs. For unweighted
directed graphs, a direct and a reverse SSSP from the same source are needed. The resulting upper
bound to the VC-dimension is an additive 1-approximation of the bound that would have been
obtained if the exact vertex-diameter were used [60, Page 456].

Bergamini and Meyerhenke [8, Sect. 3] show how to get a multiplicative 2-approximation (as-
suming constant weights) to vd(�) on weighted graph, which leads to an additive 2-approximation
of the upper bound to the VC-dimension.

The proof of Thm. 5.2 relies on a result (Thm. 5.4) to upper bound the Rademacher average
R< (F , c) (see (8)) with the VC-dimension. Theorem 5.4 allows us to adapt the result on the VC-
dimension of BC-estimation with the rk estimator [60, Coroll. 1, Lemma 2] to Rademacher averages.
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The following result, a pinnacle of statistical learning theory, connects the Rademacher average
to the supremum deviation.

Theorem 5.3 ([63, Thm. 26.5]). With probability at least 1 − [ over the choice of S, it holds

SD(F ,S) ≤ 2R< (F , c) +

√
ln 2

[

2<
. (16)

In all cases of interest for us, F and c are associated to a BC approximation method A (see
Sect. 3.2), so we use the notation R< (A) to refer to R< (FA, cA).

Theorem 5.4. Let 3 ≥ blog2 (vd(�) − 2)c + 1 or 3 = 3 if � is undirected and there is at most one
SP between any pair of vertices in � .

R< (rk) ≤

√√
2883V ln 43√

V

<
(17)

Furthermore, for some universal constant � < 262, it holds that

R< (rk) ≤
√

�3

<
.

The proof of Thm. 5.2 for the rk estimator then follows from using the upper bound in Thm. 5.4
as an upper bound to the Rademacher average in Thm. 5.3, requiring the l.h.s. of (16) to be at most
Ȳ, and solving for< to obtain the expression for m∗ (Ȳ, [). We can then use Thm. 4.2 to extend the
result to the other two estimators ab and bp.

5.1.1 Choosing the number of Monte-Carlo trials. The beauty of the Monte-Carlo bound d in
Thm. 3.1 is that the uncertainty error term added to R̂:

< (F ,S,�) is asymptotically negligible for
any choice of : (i.e., : is absent from the asymptotic form). A value : ≥ 8 would match the 8A term
inside the square root of Y, after which the Monte-Carlo estimation terms are negligible compared
to other error terms. Constant-factor improvements are still possible for : > 8, though due to
rapidly diminishing returns in : , additional computational resources are better spent on computing
more shortest paths (i.e., taking more samples) than increasing : unboundedly.

From a computational perspective, : can be selected so the cost of computing SPs amortizes
the cost of running : Monte-Carlo trials. Computing the :-MCERA5 requires O(<:=) time for BC
(often much less for the rk and ab estimators, see also Sect. 6). Assuming BFS with time complexity
O( |� |), it makes sense to have : ∈ O( |� |/=) trials, and with Dijkstra’s algorithm (time complexity
O( |� | + = log=)), to have : ∈ O(|� |/= + log=).

5.2 Progressive sampling algorithm
The algorithmic framework discussed so far uses static or one-shot sampling: it draws a single
sample S of user-specified size< from the appropriate population, and uses information from the
sample to compute the quality guarantee Y. In Sect. 5.1, we discussed how the user can make an
informed decision on< based on their desired approximation quality Ȳ. The sample sizes<∗ and
<∗ from (14) and (15) give a range [<∗,<∗] such that Bavarian may return a value Y smaller than
Ȳ when the given sample size< is within this range. The likelihood that Y is smaller than Ȳ clearly
increases as< gets closer to<∗, and the algorithm is guaranteed to return Y < Ȳ when< ≥ <∗.
We now introduce a more flexible variant of Bavarian based on progressive sampling: rather than
5We assume to not be using efficient matrix multiplication techniques, e.g., Strassen’s algorithm (see the paragraph
“Computing the :-MCERA with matrix multiplication” at the beginning of Sect. 5). Of course, using o(: ) methods to
compute the :-MCERA allows us to commensurately increase : while still amortizing this cost.
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using a single fixed size sample, our algorithm Bavarian-P uses a sample schedule Δ = (<8 ))−18=0 to
iteratively grow the sample S from an initial size<0 to larger sizes<1, . . . ,<)−1 (where ) is the
maximum number of iterations, discussed below). The algorithm stops at the earliest iteration 8

such that the approximation quality Y obtained from the sample S at iteration 8 is no larger than the
user-desired quality Ȳ. Thus, Y ≤ Ȳ is the stopping condition of our algorithm. The computation of Y
must handle the fact that we are essentially analyzing multiple samples, as discussed in the proof
of Thm. 5.5, which states the properties of Bavarian-P. We first present the algorithm (pseudocode
in Alg. 2) with the sample schedule Δ and the desired quality Ȳ passed as an input parameters, and
then discuss appropriate choices for Δ. The only requirement on Δ is

<)−1 ≥ m∗
(
Ȳ,
X

)

)
(18)

for technical reasons explained in the proof of Thm. 5.5.

Algorithm 2: Bavarian-P

Input: method A, graph � , sample schedule Δ = (<8 ))−18=0 , failure prob. X , no. of MC-trials : ,
desired quality Ȳ

Output: (�̃, Y) with the properties presented in Thm. 5.5
1 sums← map from + to vectors of size : + 2
2 foreach E ∈ + do sums[E] ← (−∞, . . . ,−∞︸         ︷︷         ︸

:

, 0, 0)
3 <−1 ← 0, 8 ← 0
4 do
5 drawSamplesAndUpdateSums(sums,<8 −<8−1, A, �)
6 if 8 < ) − 1 then Y ← getEpsilon(sums,<8 , X/))
7 else Y ← Ȳ

8 8 ← 8 + 1
9 while Y > Ȳ

10 �̃ ← {(E, sums[E] [: + 2]/<8 ) : E ∈ + }
11 return (�̃, Y)

Bavarian-P first initializes the data structure sums exactly as in the static-sampling case (see
Alg. 1 and its description), and then, starting at 8 = 0, enters a loop (lines 4–9) that continues until
the stopping condition is satisfied (more details in the following). At each iteration of the loop, the
function drawSamplesAndUpdateSums is called (line 5). It performs the operations on lines 3 to 8
of Alg. 1: it draws<8 −<8−1 samples from the population, computes the function values, draws
<8 −<8−1 :-dimensional Rademacher vectors, and appropriately updates sums while maintaining
the invariant from (13). Then (line 6), the algorithm computes the approximation quality guarantee
Y that can be obtained from the sample of size<8 seen so far, using X/) as the failure probability
(as discussed for Alg. 1).6 Bavarian-P stops iterating when the computed Y is not larger than the
desired Ȳ, which is guaranteed to be the case when 8 equals ) − 1, due to (18). The approximation �̃

is computed (line 10) and output together with Y.

6The reason for the division by ) is that, as it will be clear from the proof of Thm. 5.5, a union bound is taken over all
possible iterations. For ease of presentation, we assign to every iteration an equally failure probability X8 � X/) , but more
refined ways to “spread” X over the iterations are possible, as long as the sum of the X8 ’s equals X .
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Theorem 5.5. With probability at least 1 − X (over runs of Bavarian), the pair (�̃, Y) returned by
Bavarian-P is such that

max
E∈+

���b̃A (E) − b(E)
��� < Y ≤ Ȳ .

Proof. Consider a variant V of Bavarian-P that, rather than sampling progressively, receives
as input, in addition to all the parameters listed in Alg. 2, an ordered sequence

Z = {(B1,,1), . . . , (B<) −1 ,,<) −1 )},
where B 9 ∈ DA is sampled independently (from anything else) according to cA, and , 9 is an
independently-sampled :-dimensional vector of independent Rademacher variables. The variant
V works essentially as Alg. 2 with the exception that, instead of sampling elements of cA and
sampling vectors of Rademacher variables, it just picks the “next” element fromZ as needed.

The reason for introducing V is to make it evident that it is possible to reason about properties of
Z independently from the workings of the algorithm, asZ is fixed before the algorithm even starts.
Next, we show that V returns a pair (�̃, Y) with the desired properties mentioned in the thesis, and
then we argue how to extend these properties to Alg. 2.

Fix 8 ∈ [0,) − 1], and consider the value Y8 computed by V using the sequence of samples
Z8 = {(B1,,1), . . . , (B<8

,,<8
)}. An application of Thm. 3.1 allows us to say that, with probability at

least 1 − X/) (over the choice ofZ8 ), it holds maxE∈+
���b̃A (E) − b(E)

��� < Y8 .
We can then apply the union bound over the ) iterations, and obtain that, with probability at

least 1 − X over its runs (i.e., over the choice of the sequenceZ), the output (�̃, Y) of V satisfies

max
E∈+

���b̃A (E) − b(E)
��� < Y . (19)

The last sample size<)−1 must satisfy the requirement from (18) and when using this sample size,
V outputs Y = Ȳ. Combining this fact with (19), we get that the output (�̃, Y) of V satisfies

max
E∈+

���b̃A (E) − b(E)
��� < Y ≤ Ȳ .

We now argue that the properties enjoyed by V can be extended to Bavarian-P. Indeed to each
execution of V with a set of parameters, we can associate an execution of Bavarian-P with the same
set of parameters (minusZ) such that the sequence of random bits used to generateZ is given
to Bavarian-P and used to draw samples from DA and the Rademacher vectors , when needed.
Clearly, the ordered sequence of samples and Rademacher vectors generated by Bavarian-P in
this execution is a sub-sequence (potentially improper) of the sequenceZ given in input to V, and
specifically exactly the sub-sequence of all and only the pairs that the execution of V “used” (the
length of this sub-sequence is obviously<8 for some 8 ∈ {0, . . . ,) −1}). When using the sample size
<)−1, V returns Ȳ. The stopping condition on line 9 of Alg. 2 is guaranteed to be satisfied at some
iteration, i.e., Bavarian-P will terminate. The pair (�̃, Y) returned by this execution of Bavarian-P
is the same as the one returned by the associated execution of V, and this correspondence is true
for all executions of the two algorithms. Hence, the same properties on the output of V also hold
for Bavarian-P, and the proof is complete. �

Choosing the sample schedule. We now discuss reasonable choices for the sample schedule
Δ = (<8 ))−18=0 . Assume, for ease of presentation, that the number of iterations ) is a fixed parameter
chosen by the user. We later remove this assumption. The correctness of the algorithm requires that
the last sample size<)−1 satisfies (18), and, given what we discussed in Sect. 5.1, it makes no sense
to use a larger sample size than the quantity in the r.h.s. of (18). Thus, we assume that<)−1 equals
this quantity. It follows from Fact 1 that it also does not make sense to have<0 ≤ m∗ (:, X/), Ȳ),
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where m∗ is defined in (14). It is not necessarily appropriate to use exactly m∗ (:, X/), Ȳ) for<0,
for the reasons argued in Sect. 5.1, but this quantity can be used as a lower bound to<0. Once<0

and<)−1 have been fixed, we need to choose ) − 2 intermediate sample sizes between these two
extremes. A reasonable approach is to follow a geometrically-increasing sample schedule, which
has been shown in practice and in theory to be close to optimal [24, 40]. Thus, we have

<8 =<0

(
<)−1
<0

) 8
) −1

, for 8 = 1, . . . ,) − 2 .

The scaling factor<)−1/<0 is a result of fixing the number of iterations in advance. It is often more
convenient to let the user specify a desired scaling factor \ > 1. An unbounded binary search then
finds the minimum number of iterations) ∗ such that there are exactly) ∗−2 sample sizes<8 =<0\

8

for 8 = 1, . . . ,) ∗ − 2 between the smallest sample size (computed using (14) with [ = X/) ∗) and the
largest<) ∗−1 (from (18), potentially smaller than<0\

) ∗−1).

An adaptive sampling approach. It is tempting to assume that one could easily make the sample
schedule Δ = (<8 ))−18=0 dynamic, i.e., not fixed a priori as an input parameter to the algorithm. For
example, one may want to use information obtained at the current iteration 8 from S8 to determine
the sample size<8+1 to use at iteration 8 + 1 so that Y8+1 ≤ Ȳ, thus obtaining an adaptive progressive
sampling algorithm. In the rest of this section, we use Bavarian-A to refer to such an algorithm.

The situation is more complicated than it may seem at first: using any information from the
sample S8 to determine how much to grow S8 to obtain S8+1 ⊃ S8 , introduces dependencies between
the samples that invalidate the proof of correctness from Thm. 5.5 and do not seem easy to handle.
A workaround is to use independent samples, i.e., having S8+1 created from scratch rather than by
growing S8 . The correctness is then preserved, even if the sample size<8+1 depends on S8 .

A second issue is that, depending on how<8+1 is chosen, it may happen that the algorithm uses
an<8+1 only slightly larger than<8 , leading to negligible improvement (i.e., decrease) in Y8+1 w.r.t.
Y8 , at the expense of many additional samples being drawn, thus effectively “wasting” an iteration.
In addition to the direct cost of sampling (due to needing “completely fresh” samples at every
iteration), this waste is expensive because it consumes an iteration for negligible benefit. Wasting
an iteration is highly detrimental, because the number of iterations ) is fixed in Bavarian-A, and
the sample size<)−1 used at the ) -th iteration (i.e., the last) must be such that the algorithm will
return Y)−1 ≤ Y. In order to guarantee this property, the sample size<)−1 may need to be much
larger than the previous sample sizes, thus Bavarian-A must do all it can to terminate at an earlier
iteration. A good way to address both of these issues is to ensure that successive sample sizes are
not too close to each other, for example by imposing that<8+1 ≥ <8\ , for some \ > 1.

One way to determine<8+1 is to consider the values of the :-MCERA and of the empirical wimpy
variance V obtained at iteration 8 , and use them in (11) to compute an< for which the resulting Y is
not larger than Ȳ, which can be done with unbounded binary search, and take the larger of this
value and \<8 . This approach may be too conservative, as the :-MCERA is generally decreasing
in the sample size, and guessing that it will decay at a Θ(1/

√
<) rate (see Thm. 5.4) yields a more

aggressive estimate, though it increases the likelihood of not terminating before the ) -th iteration.
It should be evident that this (and likely any) approach to compute the next sample size is a

heuristic, in the sense that it does not guarantee that Y8+1 ≤ Ȳ, and more refined heuristics can be
developed. It is also possible to take into account information obtained at all iterations, rather than
just the most recent one, to compute<8+1, for example through curve fitting. We do not discuss
these approaches here, as we focus on the main ideas of the adaptive sampling approach.

If Bavarian-A does not stop before the ) -th iteration, there are several ways to select the last
sample size<)−1 so that the algorithm can return Y)−1 ≤ Ȳ. Naïvely, one could use the same a
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priori sufficient sample size<)−1 used by Bavarian-P (see (15)). This quantity is usually very large,
and we can use the adaptive nature of Bavarian-A to at least get some theoretical improvement,
as follows. The union bound over all ) iterations (which comes from the proof of correctness for
Bavarian-P), ensures that all upper bounds to, e.g., the wimpy variance obtained in the previous
iterations of Bavarian-A remain valid, so we may use the best bound W thus-far obtained on the
wimpy variance in place of V in (17), to obtain an expression for an upper bound to the Rademacher
average, and then use this expression in place of A in (11) (with [ = X/) ), and solve for< using
unbounded binary search to obtain<)−1. When using this sample size,7 Bavarian-A will return
Y)−1 = Ȳ, like Bavarian-P does at the last iteration.

It is difficult to precisely analyze the additional cost, in terms of the number of drawn samples, of
Bavarian-A w.r.t. the “one-shot” static sampling algorithm Bavarian, when the adaptive algorithm
terminates before the ) -th iteration, but we can at least make some informal claims about this
additional cost in a restricted case.

Fix b ∈ (0, 1), and let<S,Ȳ � <S,Ȳ (b) be the minimum sample size such that Bavarian returns an
error bound Y ≤ Ȳ in a fraction at least b of all possible samples of size<S,Ȳ (b). The quantity<S,Ȳ

is unknown, and it does not seem to be possible to derive an expression for it, but that is not a
problem for our informal reasoning. Assume X ≤ 1/4 , then the size<A,Ȳ =<AȲ (b) with the same
property for Bavarian-A should be

<A,Ȳ ≈<S,Ȳ
ln) + ln 1

X

ln 1
X

≤ <S,Ȳ ln(4) ), (20)

due to the union bound over the ) iterations (see discussion for Bavarian-P).
Assume now that \ and<0 are such that there exists a 0 ≤ 8 < ) − 1 such that<A,Ȳ ≤ <0\

8 , and
let 9 be the smallest such 8 . From the definition of<A,Ȳ , with probability at least 1 − b , Bavarian-A
will stop at the earliest iteration : with a sample size<: ≥ <0\

9 . It must be : ≤ 9 . Assume this
event occurs, i.e., indeed Bavarian-A stops at the sample size<: .

For every 0 ≤ 8 ≤ : , it holds <8 ≤ <:/\:−8 . Then, the total number of samples drawn by
Bavarian-A is

:∑
8=0

<:

\ 8
=<:

(1 − 1
\:+1
)\

\ − 1 ≤ <:

\

\ − 1 . (21)

Now, in the worst case, it may happen that<:−1 =<A,Ȳ−1, but if the heuristic used by Bavarian-
A works sufficiently well, then it would suggest a sample size for the next iteration that is less than
<0\

: , thus it will actually hold<: =<0\
: , i.e.,<: ≈<A,Ȳ\ . We can then conclude, using this fact

and equations (21) and (20), that Bavarian-A draws, in total, a number of samples that is at most

<S,Ȳ
\ 2

\ − 1 ln(4) ) . (22)

Thus, the cost of “complete” adaptivity, in the sense of completely freeing the user from having
to choose any sample size, is not excessive: the multiplicative factor in (22) is optimized for \ = 2,
when it takes the value 4 ln(4) ).

5.3 Extensions
The unifying approach of Bavarian and Bavarian-P allows them to be adapted to work with
many variants of BC and other centrality measures. To avoid overweighting our presentation, we

7This procedure can actually be used at any the end of any iteration 8 to compute another candidate value I for<8+1: if
<8\ or the value computed using the information from the current sample are larger than this candidate value I, then I

should be used for<8+1, and the algorithm should terminate and return Y8+1 = Ȳ at the end of the next iteration.
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only remark that the extensions to other BC variants would follow the approach discussed in [60,
Sect. 6], and de Lima et al. [27] show how to estimate the percolation centrality via sampling by
adapting the work of Riondato and Kornaropoulos [60] and Riondato and Upfal [61]. One can
similarly adapt Bavarian to estimate percolation centrality. When dealing with fully-dynamic
graphs with arbitrary insertions and/or deletions of edges and/or vertices, Bavarian can be used
as a drop-in replacement for ABRA, as discussed in [61, Sect. 5].

An interesting direction for future work is understanding the requirements for other centrality
measures to be amenable to approximation using the :-MCERA and/or similar tools. The extension
is less straightforward than it may seem at first, due to the need for efficient sampling schemes
from the appropriate populations.

6 EXPERIMENTAL EVALUATION
We now present the results of our experimental evaluation of Bavarian and Bavarian-P and of
the comparison between the different estimators presented in Sect. 3.2.

Goals. A first goal is to evaluate the behavior of the quality guarantee Y output by Bavarian as
the input parameters< and : change, and to compare it with that of the state of the art for each
estimator. This comparison allows us to assess the power of the :-MCERA and of the variance-
aware tail bound on the SD (Thm. 3.1). We also evaluate the trade-off between Y and runtime for
the different BC estimators, to understand which one is more “efficient” in terms of the accuracy
guarantee improvement per unit of time. Bavarian does not in any way change the empirical
properties of the estimators (e.g., the similarity between the ranking of the vertices by estimated BC
and the ranking by exact BC), so we do not evaluate them. For in-depth evaluations of such very
important aspects, which are not impacted by Bavarian, see the original works [20, 60, 61] and
the experimental comparisons by Matta et al. [51] and AlGhamdi et al. [1].

Implementation, environment, and datasets. We implemented Bavarian and Bavarian-P in
C++20 as an extension of NetworKit [65], and compared it with the implementation of Brandes’s
algorithm [18] included in the same suite. There are many opportunities for parallelization, some of
which we implement, but when evaluating the algorithms we disable parallelism. All the code and
datasets can be found at https://github.com/acdmammoths/Bavarian-code, including a README.md
file with instructions, and a script to run all our experiments and to generate all the figures and
tables. We run the experiments on a FreeBSD 11 Amazon AWS instance with 8 AMD EPYC CPUs
and 32GB of RAM. We used different combinations of values for<, : , X , and on different graphs
(see below), doing five runs per combination. The difference across runs is minimal, which is not
surprising as most of our results are not absolutely tight, while being tighter than previous works.
We report the results for the median, the maximum and the minimum over the runs (represented
as shaded areas around the curve for the median). We only show results for X = 0.1. This parameter
has minimal impact on the performances of our algorithm, and results for other values of X are
qualitatively similar.

We used datasets from the SNAP repository [47]. Their salient characteristics are reported in
Table 2.

6.1 Results
We start by remarking that in all the hundreds of runs we performed, the supremum deviation (i.e.,
the maximum error in our estimation) was always less than the error Y returned by Bavarian, and
often significantly so.This fact is not surprising, asThm. 3.1 is not necessarily tight. Hence, Bavarian
is even more accurate than the theory guarantees, which leaves space for future improvements.
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Table 2. Dataset characteristics

Graph Vertices Edges Directed

ca-AstroPh 17,903 197,031 N
cit-HepPh 34,546 421,578 N
email-Enron 36,682 183,831 N
p2p-Gnutella31 62,586 147,892 Y
soc-Epinions1 75,879 508,837 Y
loc-gowalla 196,591 950,327 N
com-dblp 317,080 1,049,866 N
com-youtube 1,134,890 2,987,624 N
as-skitter 1,694,616 11,094,209 N
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Fig. 3. Error bound Y decomposition.

Impact of : . We evaluate the impact of : on Y, as the impact of : on the runtime is negligible,
because Bavarian’s runtime is heavily dominated by the SSSP computations. We run Bavarian for
different values of: and split Y in its components fromThm. 3.1. In Fig. 3, we show the decomposition,
and observe the behavior as function of : , on the com-youtube graph, with < = 8000 (results
for other values of the parameters and other datasets are qualitatively similar, and are shown
in Fig. 15 in App. A.2). The G-axis of the figure has essentially a logarithmic scale. We can see
that Y rapidly decreases as a function of : , but the returns are diminishing. The decrease of Y is
readily explained by looking at its components: the dark blue (bottom) part of the bars is twice the
:-MCERA (i.e., 2R̂:

< (F ,S,�)), the orange (2nd from bottom) portion is the difference between 2d
and 2R̂:

< (F ,S,�), the cyan (3rd from bottom) is the difference between 2A and 2d , and the purple
(top portion) is the difference between Y and 2A . The only part that changes significantly with :

is the orange one, which corresponds to the probabilistic tail bound from the :-MCERA to the
ERA, its expectation w.r.t. �. As the :-MCERA is tightly concentrated around the ERA, it is not
surprising that with even a relatively small number of MC trials, this tail bound becomes negligible
w.r.t. the other terms.

Impact of<. Figure 4 show the impact of the sample size< on the error bound Y and on the
runtime, respectively, for : = 100. As expected, the error bound decreases approximately as
1/B@AC< and the runtime increases linearly with<. The use of the :-MCERA and of Thm. 3.1 allows
Bavarian to obtain much smaller (2–4x) error bounds than previous works for all estimators, and
much closer to the empirical maximum error measured on the sample. Such an improvement is
significant: the goal in developing sampling-based approximation algorithms, is to obtain error
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Fig. 4. Error bound Y vs. sample size<.

bounds (i.e., quality guarantees) that are as close as possible to the empirical maximum error, in
order to be informative, as the empirical maximum error is not available in practice (if one had the
exact results available, there would be no need to use the approximation algorithm). In this sense,
the improvement in terms of the distance from the empirical maximum error can be considered
much more important than the relative or absolute improvement over the previously available
error bounds. The error bounds can still be tightened, but the leap forward towards the empirical
maximum error is significant.

A 2–4x decrease in the error bound also directly translates in a 4–16x reduction in the sample
size needed to obtain that upper bound (the error bound Y decreases as O(1/

√
<), where < is

the sample size), thus in a similar reduction in the running time: such a reduction can mean the
difference between being able to use the approximation algorithm (because it would take less time
than running the exact algorithm), and not being able to use it.

From just Fig. 4, one may be tempted to say that the bp estimator should be preferred, because
it results in a smaller Y. This conclusion would not be appropriate: as discussed in Sect. 3.2, the
estimators sample from different populations, and do differentwork per sample, so their performance
at equal sample sizes cannot really be compared.

Units of guarantee per unit of time. Figure 5 clearly shows that Bavarian with bp takes much
longer at each sample size than with other estimators (which take approximately the same time
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Fig. 5. Runtime vs. sample size<.
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Fig. 6. Error bound Y vs. time

because they do similar work per sample), and becomes slower than the exact algorithm earlier.8

8The com-youtube and as-skitter graphs are too large to run the exact algorithm on them, so Figs. 5h and 5i do not show a
horizontal curve for the exact algorithm runtime, and we report the running times in seconds, rather than as percentages of
the running time of the exact algorithm.
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Thus, bp is more “efficient”, in terms of “unit of guarantee” per sample unit, than the other estimators,
but it is less efficient per unit of time. We therefore evaluate the error bound Y returned by Bavarian
with each estimator when run for a fixed amount of time. Specifically, we use, as these timeouts,
three percentages of the runtime of the exact algorithm on the graphs (25%, 50%, and 75% for each
graph, except com-dblp, for which we used 2.5%, 5%, and 7.5% to keep the running time reasonable.
We did not use com-youtube and as-skitter for this experiment because the exact algorithm would
take an unreasonable amount of time on our hardware). In Fig. 6, we show the results.9

It is clear that rk should never be preferred, as it is always dominated by at least one of the other
two estimators. The comparison between ab and bp is a bit more complicated: while in most graphs
ab is more efficient, in soc-Epinions1 (Fig. 6e) bp gives a much better error bound. We analyzed
the results in this dataset more in depth and found that the :-MCERA for bp approximately half
that for ab. This aspect drives down the error bound for bp w.r.t. the one for ab, and is in part
explained by the fact that the empirical wimpy variance Vbp for bp was close to 1/5 of that for ab,
since the RA depends on the wimpy variance (see Thm. 5.4). We believe that this large difference
may in part be caused by the fact that soc-Epinions1 is a directed graph, but we do not see the
same phenomenon on other directed graphs (ca-AstroPh and p2p-Gnutella31). A theoretical study
of the cases when bp may be more efficient than ab would be an interesting direction for future
work, but seems extremely challenging and may lead to conclusions that are not actionable: the
user may need to select an estimator before knowing anything about the graph. The results of this
experiment make us conclude, that in most cases, ab should likely be preferred, as it gives the best
“bang for the buck.”

Evaluation of Bavarian-P. In our runs of Bavarian-P, we fixed X = 0.1, : = 100, and used a
desired quality guarantee Ȳ ∈ {0.01, 0.015, 0.02}, and run the algorithm with a geometric schedule
<8 = \ 8<0 for a scaling factor \ ∈ {1.25, 1.5, 2}, and<0 =<∗ (:, X, Ȳ) (see (14)). The property of the
estimations are the same as those of Bavarian, so we focus here on discussing the salient properties
that are characteristic of a progressive sampling algorithm. The results are reported in Table 3 for
email-Enron and Table 4 for com-dblp, while results for other datasets, which are qualitatively
similar, are in App. A.2. In the tables we show the value Y actually returned by the algorithm,
the ratio Y/Ȳ (which must not be greater than 1), the Y that would have been returned by a static
algorithm using the bounds presented in previous work (more details below), the final sample size,
the iteration at which the algorithm returned Y ≤ Ȳ, and the maximum number of iterations that the
algorithm may have taken. The first observation we can make is that the algorithm stops in all cases
relatively early, i.e., at an iteration much earlier than the last. This fact confirms the looseness of
the terminal sample size<∗ (Y, X) (see (18)), computed using an upper bound to the VC-dimension,
which is itself used in a worst-case upper bound to the =-MCERA. Developing better bounds is, as
always, an interesting direction for future work, but not an easy one: Riondato and Kornaropoulos
[60, Sect. 4.2] show that the upper bound to the VC-dimension is actually tight for some class of
graphs. A potentially more promising direction could be trying to incorporate in the computation
of<∗ (Y, X) an upper bound to the wimpy variance that depends on easy-to-compute characteristic

9We do not report the error bounds for the original “non-Bavarian” algorithms run for a percentage of the exact time,
because to do so would require a reimplementation to support stopping after a specified amount of time and returning their
error bounds. These modifications are not straightforward to make in the original code. Additionally, the original algorithms
have other steps in addition to sampling that make implementing this feature a bit tricky: for example, the original rk needs
to compute an approximation of the vertex-diameter to compute its error bound, and the original ab needs to perform a
convex minimization. The code cannot know in advance how long these operations are going to take, which would impact
the reported results. In Bavarian, we were able to eliminate such additional operations, so essentially all its running time is
spent on sampling, as the computation of the error bound is straightforward and is done while sampling.
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Table 3. Progressive sampling results — email-Enron

method Ȳ \ Y Y/Ȳ prev. work Y < iter max. iters

ab

0.010
1.25 0.009067 0.906651 0.019064 47047 12 34
1.50 0.008498 0.849769 0.018373 50576 7 19
2.00 0.009289 0.928888 0.019756 43264 4 11

0.015
1.25 0.014332 0.955460 0.029723 19832 10 32
1.50 0.013222 0.881440 0.027718 22418 6 18
2.00 0.011484 0.765627 0.024365 28928 4 11

0.020
1.25 0.019429 0.971460 0.039128 11867 9 31
1.50 0.015737 0.786850 0.032777 16677 6 17
2.00 0.013373 0.668675 0.028584 21376 4 10

bp

0.010
1.25 0.009537 0.953671 0.016691 24087 9 34
1.50 0.009428 0.942846 0.017278 22478 5 19
2.00 0.009853 0.985291 0.017613 21632 3 11

0.015
1.25 0.013797 0.919800 0.022994 12692 8 32
1.50 0.012333 0.822173 0.021190 14945 5 18
2.00 0.012712 0.847440 0.021539 14464 3 11

0.020
1.25 0.018339 0.916935 0.029726 7594 7 31
1.50 0.018869 0.943460 0.030089 7412 4 17
2.00 0.014877 0.743865 0.025057 10688 3 10

rk

0.010
1.25 0.009289 0.928880 0.012459 47047 12 34
1.50 0.008800 0.880028 0.012016 50576 7 19
2.00 0.009475 0.947457 0.012992 43264 4 11

0.015
1.25 0.013385 0.892367 0.017163 24790 11 32
1.50 0.013919 0.927900 0.018048 22418 6 18
2.00 0.012122 0.808140 0.015888 28928 4 11

0.020
1.25 0.017970 0.898505 0.022187 14834 10 31
1.50 0.016520 0.825980 0.020926 16677 6 17
2.00 0.014479 0.723970 0.018483 21376 4 10

quantities of the graph. In practice though, the fact that<∗ (Y, X) appear to be a bit loose has no
impact, as the algorithm is still able to stop early.

A second observation is that Y is, from time to time, much smaller than Ȳ (i.e., the ratio Y/Ȳ is
much smaller than 1). These results can be explained by the fact that the sample schedule is fixed a
priori, and is guided by Ȳ, X , and \ (see Sect. 5.2), thus the first iteration for which Y ≤ Ȳ may have a
sample size sufficiently large that Y is much smaller than the user-desired error bound: a smaller
sample size would have been sufficient to get Y ≤ Ȳ, but the inflexibility of the sample schedule does
not allow us to select the next sample size “on the fly”. The choice of the parameter \ is important
in this sense: a lower multiplier \ implies that the sample sizes of different iterations are closer to
each other, thus the algorithm is unlikely to take many more samples than needed to get Y < Ȳ, and
therefore will obtain a Y close to Ȳ. Nevertheless, it is difficult to optimally choose \ a priori: there
are cases where, for lower \ , the algorithm terminates at a larger sample size than at higher values
for this parameter (e.g., on email-Enron, using the bp method, with Ȳ = 0.01, or on the same graph
with rk and Ȳ = 0.015.) This effect is again due to the fact that the sample schedule is fixed a priori
and depends on \ , so the algorithm may not terminate at an iteration, but would have terminated
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Table 4. Progressive sampling results — com-dblp

method Ȳ \ Y Y/Ȳ prev. work Y < iter max. iters

ab

0.010
1.25 0.009282 0.928247 0.024600 9865 5 34
1.50 0.009456 0.945582 0.025405 9990 3 19
2.00 0.008760 0.876025 0.023547 10816 2 11

0.015
1.25 0.014432 0.962147 0.034764 5197 4 32
1.50 0.012297 0.819820 0.030401 6642 3 18
2.00 0.011612 0.774127 0.029827 7232 2 11

0.020
1.25 0.017727 0.886330 0.040692 3888 4 31
1.50 0.019693 0.984660 0.045224 3294 2 17
2.00 0.014423 0.721135 0.035420 5344 2 10

bp

0.010
1.25 0.009652 0.965203 0.039380 5050 2 34
1.50 0.007750 0.774992 0.034291 6660 2 19
2.00 0.009362 0.936239 0.038054 5408 1 11

0.015
1.25 0.013081 0.872033 0.048531 3325 2 32
1.50 0.014771 0.984707 0.051506 2952 1 18
2.00 0.012980 0.865360 0.046538 3616 1 11

0.020
1.25 0.016806 0.840300 0.056104 2488 2 31
1.50 0.018187 0.909340 0.059717 2196 1 17
2.00 0.015939 0.796975 0.054138 2672 1 10

rk

0.010
1.25 0.009549 0.954909 0.024334 12332 6 34
1.50 0.008724 0.872364 0.022076 14985 4 19
2.00 0.006892 0.689154 0.018373 21632 3 11

0.015
1.25 0.012863 0.857567 0.029985 8122 6 32
1.50 0.014213 0.947560 0.033158 6642 3 18
2.00 0.013469 0.897953 0.031777 7232 2 11

0.020
1.25 0.018585 0.929270 0.038763 4860 5 31
1.50 0.017594 0.879725 0.038444 4941 3 17
2.00 0.016709 0.835465 0.036966 5344 2 10

with just a few more (relatively speaking) samples, much fewer than the amount taken at the next
iteration, for the chosen value of \ . Clearly there is always an \ that is optimal for a specific graph
and a specific desired value Y: if we assume that the algorithm needs< samples to get a quality
guarantee Y ≤ Ȳ, then the optimal \ is the that results in a sample size<8 closest to but larger
than<. In general though, a lower \ is usually to be preferred: in some cases the difference is of
thousands fewer samples taken when considering a lower \ than a larger one (e.g., on email-Enron
with ab, for Ȳ = 0.01).

Another observation is that the Y computed by Bavarian-P is much smaller than the one
computed by static sampling algorithm presented in previous works, as we also already observed
for Bavarian in Fig. 4 and comment on it. Let us now explain the consequence of this fact for
progressive sampling. Bavarian-P “pays” for its being a progressive sampling algorithm through an
union bound over the iterations (Sect. 5.2), which makes the computed Y larger than if we directly
used a sample of the size equal to the sample size used at the last iteration. The static sampling
algorithm presented in previous work do not have to pay for this price. Nevertheless, as can be
observed from Tables 3 and 4 (and all the others in App. A.2), in all cases, the Y returned by the
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progressive algorithm Bavarian-P is much smaller than the Y returned by previous static algorithms.
By comparing this “prev. work Y” with Ȳ, one can also see that the former is larger than the latter,
which means that progressive sampling versions of the previous works would not be able to stop
as early as Bavarian-P, thus proving its superiority. This advantage of Bavarian-P is due to the
use of the :-MCERA and the refined bounds on it that use the empirical wimpy variance.

In conclusion, we can say that the progressive sampling algorithm achieves its goals of freeing
the user from having to select a sample size “blindly” and allows them to express their desired
quality guarantees Ȳ instead, while being much more efficient (by stopping earlier) than existing
algorithms, both progressive and static.

7 CONCLUSIONS
We present Bavarian, a suite of algorithms for approximating the BC of all vertices in a graph, with
stringent probabilistic quality guarantees. Bavarian achieves a better trade-off between sample
size and approximation quality, thanks to the use of :-MCERAs and their variance-aware bounds,
which are of independent interest. The unifying framework offered by Bavarian allows for a
fair comparison of different sampling-based estimators for BC, and for us to generalize sample-
complexity results that held only for one estimator. The results of our experimental evaluation of
Bavarian show it guarantees much better approximations at smaller sample sizes, i.e., faster, than
the previous state of the art. A few MC-trials (i.e., low :) are sufficient to get a low error bound.
The ab estimator stands out, in most cases, as more efficient than the others in terms of “unit of
guarantee” per unit of time.
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A ADDITIONAL MATERIALS
A.1 Missing Proofs
We now seek to prove Thm. 3.1. In service of this result, we require a few intermediaries.

Definition A.1. A function Z ∈ D< → R is self-bounding with scale W ≥ 0, for some W ≥ 0 if for
each 9 = 1, . . . ,<, there exists a function Z9 ∈ D< → R such that, for any S ∈ D< it holds that

(1) Z9 (S) does not depend on the 9-th component S9 of S; and
(2) it holds Z9 (S) ≤ Z(S) ≤ Z9 (S) + W ;

Additionally, the functions Z9 , 9 = 1, . . . ,<, must be such that, for any S ∈ D< , it holds
<∑
9=1

(
Z(S) − Z9 (S)

)
≤ Z(S) .

Theorem A.2. Let Z be a function from D< to R that is self-bounding with scale W . Let X ∈ (0, 1),
and S be a collection of< i.i.d. samples from D. With prob. ≥ 1 − X over the choice of S, it holds

ES [Z(S)] ≤ Z(S) + 2W

3
ln
1
X
+

√(
W
√
3
ln
1
X

)2
+ 2WZ(S) ln 1

X
. (23)

This result is derived using the sub-gamma form in [16, Sect. 2.1] of the stronger sub-Poisson
self-bounding function inequality [15, Thm. 1]. This form appeared as [25, Thm. 6].

Theorem A.3. With probability at least 1 − [ over the choice of S, it holds that

v ≤ V +
2 ln 5

[

3<
+

√√√(
ln 5

[√
3<

)2
+
2V ln 5

[

<
.

Proof. We show this result by showing that an upper-bound on the raw wimpy variance is
self-bounding with scale 1

<
. First note that by Jensen’s inequality,

<v = sup
5 ∈F
ES

[
<∑
8=1

(5 (S8 ))2
]
≤ ES

[
sup
5 ∈F
(5 (S8 ))2

]
=<ES [V] .

The remainder of this proof thus seeks to bound the r.h.s., as this yields a bound on v, as desired.
Suppose S ∈ D< , let S\9 denote the vector S, missing the 9th component, note that

Z(S) = sup
5 ∈F

<∑
8=1

5 2 (S8 ) ,
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and take

Z9 (S) � sup
5 ∈F

<∑
8=1, 8≠9

5 2 (S8 ) = sup
5 ∈F

(
<∑
8=1

5 2 (S8 )
)
− 5 2 (S9 ) .

Clearly we have that 0 ≤ Z(S) and ∀9 ∈ 1 . . .< : Z(S) −1 ≤ Z9 (S) ≤ Z(S), essentially because
F 2 (D) ⊆ [0, 1]. We now show that Z(·) obeys (1, 0)-self-boundedness.

<∑
9=1

Z(S) − Z9 (S) =<Z(S) −
<∑
9=1

sup
5 ∈F

((
<∑
8=1

5 2 (S8 )
)
− 5 2 (S9 )

)
≤ <Z(S) − sup

5 ∈F

<∑
9=1

(
<∑
8=1

5 2 (S8 )
)
− 5 2 (S9 )

=<Z(S) − sup
5 ∈F
(< − 1)

<∑
8=1

5 2 (S8 )

=<Z(S) − (< − 1)Z(S) = Z(S)

We may now conclude that Z(·) is a self-bounding function. It thus follows that V = 1
<

Z(S) is
self-bounding with scale 1

<
The remainder of the result then follows via Thm. A.2. �

Theorem 3.1. Let [ ∈ (0, 1), and define the quantities

W � V +
2 ln 5

[

3<
+

√√√(
ln 5

[√
3<

)2
+
2V ln 5

[

<
, (10)

d � R̂:
< (F ,S,�) +

2 ln 5
[

3:<
+

√
4V ln 5

[

:<
,

A � d +
ln 5

[

3<
+

√√√(
ln 5

[

2
√
3<

)2
+
d ln 5

[

<
,

Y � 2A +
ln 5

[

3<
+

√
2 (W + 4A ) ln 5

[

<
, (11)

Then, with probability at least 1 − [ over the choice of S and �, it holds that

SD(F ,S) ≤ Y .

Proof. We show this result as a union bound over exponential tail bounds (hence the ln 5
[
in all

bounds) on five events, each dependent on the draw of � and S. We now enumerate these bounds,
and note that where each bound depends on an unknown quantity, we substitute an upper-bound
based on an empirical quantity.

The first is on W , which upper-bounds the wimpy-variance via Thm. A.3. The next is on d , which
holds via the Monte-Carlo estimation theorem [25, Thm. 5]. The third is on A , and holds via the self-
bounding function inequality (Thm. A.2), using the well-known scale 1/2<-self-bounding property
of Rademacher averages [16, Ex. 3.12]. Finally, the fourth and fifth tail bounds are on Y (upper and
lower tails), both via Bousquet’s inequality [17], which bounds the SD as stated.

These five bounds then all hold simultaneously with probability ≥ 1 − 5 · [5 = 1 − [ via the union
bound, yielding the desideratum. �
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Relating Variances and Rademacher Averages of Estimators. We now show Thms. 4.1 and 4.2. Both
results follow by expressing the BC as a nested sequence of conditional expectations over< samples
(as in eq. (12)), and then commuting expectations outward through squaring (raw variance) and
supremum (Rademacher average) operators.

Theorem 4.1. For the raw variances of the three estimators it holds

∀F ∈ + :
(
b(F)

)2 ≤ Ecbp

[
(5F (D))2

]
≤ Ecab

[
(5F (D, E))2

]
≤ Ecrk

[
(5F (?))2

]
= b(F) .

The same relationship extends to the wimpy variances of the families of each estimator.

Proof. Suppose random variables D, E and ? , representing a pair of distinct vertices, uniformly
distributed among such pairs, and a shortest path between them, uniformly distributed among the
SPs from D to E , if at least one such path exists, and ? is the special empty path (D, E) otherwise
(the empty path is not really a path, but its salient characteristic is to have no interval vertices).
Now, w.l.o.g., fix some E ∈ + . It then holds that

Ecbp

[
(5F (D))2

]
= ED

[
5 2F (D)

]
= ED

[ (
EE≠D [5F (D, E)]

)2] ≤ ED,E [
5 2F (D, E)

]
= Ecab

[
(5F (D, E))2

]
,

which gives the second inequality from the left in the thesis, and the last steps follows from Jensen’s
inequality. Continuing from the last step, we obtain

Ecab

[
(5F (D, E))2

]
= ED,E

[
E?∈crk |D,E

[
5 2F (?)

] ]
≤ ED,E,?

[
5 2F (?)

]
= E?

[
5 2F (?)

]
= Ecrk

[
(5F (?))2

]
,

where we again used Jensen’s inequality, to obtain the third inequality from the left. To see the
leftmost inequality, note that each estimator shares the common expectation b(F), and for any
random variable - bounded on [0, 1], it holds that(

E [- ]
)2 ≤ E [

- 2] ≤ E [- ] ,

which completes the results. �

Theorem 4.2. For the Rademacher averages of the three estimators it holds

R< (Fbp, cbp) ≤ R< (Fab, cab) ≤ R< (Frk, crk) .

Proof. The proof proceeds largely as in Thm. 4.1, except now our random variables are u, v,
representing vectors of (D8 , E8 ) pairs of distinct vertices, each uniformly distributed among such
pairs, and p, representing a vector of SPs ?8 from D8 to E8 (or ?8 = (D8 , E8 ), if there is no SP from
D8 to E8 ), each uniformly distributed among the SPs connecting D8 to E8 . Furthermore, as we are
bounding Rademacher averages, we also have a vector , of< i.i.d. Rademacher random variables.

With this setup, we observe the result, as

R< (Fbp, cbp) = Eu,,

[
sup
5 ∈Fbp

1
<

<∑
8=1

5 (D8 )_8

]
= Eu,,

[
sup
F∈+

1
<

<∑
8=1

EE8≠D8 [5F (D8 , E8 )] _8

]
≤ Eu,v,,

[
sup
F∈+

1
<

<∑
8=1

5F (D8 , E8 )_8

]
= R< (Fab, cab)

which follows from Jensen’s inequality and gives the leftmost inequality in the thesis. Continuing
from the above we then have

R< (Fab, cab) = Eu,v,,

[
sup
F∈+

1
<

<∑
8=1

E?∈crk |D8 ,E8 [5F (?)] _8

]
≤ Eu,v,p,,

[
sup
F∈+

1
<

<∑
8=1

5F (?8 )_8

]
= Ep,,

[
sup
F∈+

1
<

<∑
8=1

5F (?8 )_8

]
= R< (Frk, crk),
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where again we used Jensen’s inequality to obtain the rightmost inequality in the thesis. �

Lemma 4.3. For anyF ∈ + , it holds

b(F)Ecab

[
fED (F)
fED

����fED (F) > 0

]
≤ Ecab

[
(5F (D, E))2

]
≤ b(F)max

E,D≠E

fED (F)
fED

.

Proof. We first show the lower bound. Using the definition of 5F (E,D) from (4), and then the
law of total expectation and Jensen’s inequality, we get

Ecab

[
(5F (D, E))2

]
= Ecab

[(
fED (F)
fED

)2]
= Pr(fED (F) > 0)Ecab

[(
fED (F)
fED

)2�����fED (F) > 0

]
≥ Pr(fED (F) > 0)

(
Ecab

[
fED (F)
fED

����fED (F) > 0

] )2
= b(F)Ecab

[
fED (F)
fED

����fED (F) > 0

]
,

where the last step is another application of the law of total expectation.
Now we show the upper bound. Using the definition of 5F (E,D) and monotonicity, we obtain

Ecab

[
(5F (D, E))2

]
= Ecab

[(
fED (F)
fED

)2]
≤ Ecab

[
fED (F)
fED

]
max
E,D≠E

fED (F)
fED

= b(F) max
D,E≠D

fED (F)
fED

.

�

We now show Lemma 4.4.

Lemma 4.4. For anyF ∈ + , let E be drawn uniformly at random from+ , and D be drawn uniformly
at random from + \ {E}, it holds

b(F)Ecbp

[
ED |E

[
fED (F)
fED

] ����ED |E [
fED (F)
fED

]
> 0

]
≤ Ecbp

[
(5F (E))2

]
≤ b(F)max

E
ED |E

[
fED (F)
fED

]
.

Proof. From the definition of 5F (E) in (5), it holds

5F (E) = ED |E
[
fED (F)
fED

]
. (24)

We first show the lower bound. Using the definition of 5F (E) from (5), and then the law of total
expectation and Jensen’s inequality, we get

Ecbp

[
(5F (E))2

]
= Ecbp

[(
ED |E

[
fED (F)
fED

] )2]
= Pr

E

(
ED |E

[
fED (F)
fED

]
> 0

)
Ecbp

[(
ED |E

[
fED (F)
fED

] )2�����ED |E [
fED (F)
fED

]
> 0

]
≥ Pr

E

(
ED |E

[
fED (F)
fED

]
> 0

) (
Ecbp

[
ED |E

[
fED (F)
fED

] ����ED |E [
fED (F)
fED

]
> 0

] )2
= b(F)Ecbp

[
ED |E

[
fED (F)
fED

] ����ED |E [
fED (F)
fED

]
> 0

]
.

where the last step is another application of the law of total expectation.
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We now show the upper bound. Using eq. (24), and simple monotonicity, we get

Ecbp

[
(5F (E))2

]
= Ecbp

[(
ED |E

[
fED (F)
fED

] )2]
≤ Ecbp

[
ED |E

[
fED (F)
fED

] ]
max
E∈+
ED |E

[
fED (F)
fED

]
= b(F)max

E∈+
ED |E

[
fED (F)
fED

]
. �

Lemma 4.5. For anyF ∈ + , it holds

V[b̃ab (F)]
V[b̃rk (F)]

≤ max
E,D≠E

fED (F)
fED

(≤ 1) .

Proof. Using the fact that the estimators are sum of i.i.d. random variables, and then applying
fundamental properties of the variance, it is easy to see that

V[b̃ab (F)] =
1
<

(
Ecab

[
(5F (E,D))2

]
− (b(F))2

)
and

V[b̃rk (F)] =
1
<

(
Ecrk

[
(5F (?))2

]
− (b(F))2

)
.

A consequence of the above and of Lemma 4.3 is that V[b̃ab (F)] ≤ V[b̃rk (F)]. It also holds that
they are both non-negative, and obviously (b(F))2 ≥ 0. So we can use the fact that

0

1
≤ 0 + 2

1 + 2 for any 0 < 0 ≤ 1, 0 ≤ 2

and Lemma 4.3 to complete the proof as

V[b̃ab (F)]
V[b̃rk (F)]

≤
Ecab

[
(5F (E,D))2

]
Ecrk

[
(5F (?))2

] ≤ max
E,D≠E

fED (F)
fED

. �

Rademacher Averages of BC Estimators. In service of Thm. 5.4, we first show a technical lemma.

Lemma A.4. Suppose a function family F with codomain {0, 1} of VC dimension 3 , and a sample
S such that F has empirical wimpy variance V on S. Then

R̂< (F ,S) ≤

√√
2883V ln 43√

V

<
.

Furthermore, for some universal constant � < 262, it holds that

R̂< (F ,S) ≤
√

�3

<
.

Proof. We first state a few standard results that we use to show the desideratum. The entropy
integral theorem [64] states that

R̂< (F ,S) ≤ 12
∫ √

V

lim 0+

√
N2 (F , W)

<
dW ,

ACM Trans. Knowl. Discov. Data., Vol. 17, No. 6, Article 78. Publication date: March 2023.



78:36 Cyrus Cousins, Chloe Wohlgemuth, and Matteo Riondato

where as usual V is the empirical raw wimpy variance. Haussler’s bound [36] on the W-VC entropy
[see 16, lemma 13.6] states that for a function family F with codomain {0, 1} of VC dimension 3 , it
holds that

lnN2 (F , W) ≤ 23 ln
42

W
.

Putting these results together yields the following inequality chain.

R̂< (F ,S) ≤ 12
∫ √

V

lim0+

√
N2 (F , W)

<
dW Entropy Integral Theorem

≤ 12
∫ √

V

lim0+

√
23 ln 42

W

<
dW Haussler Bound

= 12

√
23
<

∫ √
V

lim0+

√
ln

42

W
dW

= 12

√
23
<
·
(
W

√
ln 42

W
− 42
√
c

2
erf

(√
ln 42

W

)����W=√V

limW→0+

)
Improper Integration

= 12

√
23
<
·
(√

V

√
ln 42√

V
+ 4

2√c
2

(
1 − erf

(√
ln 42√

V

)))
≤ 12

√
23
<

√
V ln

43√
V

. ∀D ≥ 1 :
√
lnD + D

√
c

2
erfc(
√
lnD) ≤

√
ln(4D)

=

√√
2883V ln 43√

V

<
.

This yields the first inequality.
The second result, with the constant� < 262, has a few additional subtleties. First, note that range-

centralizing, i.e., translating the function family by− 1
2 , yields a new family with rawwimpy variance

V ′ ≤ 1
4 . However, by translation invariance, this operation not change empirical Rademacher

averages or the covering numbers. Performing this range-centralization step before applying a
truncation of the above result yields the second inequality. In particular, the result follows by
range-centralizing, taking V ′ = 1

4 , and evaluating the intermediate form

12

√
23
<
·
(√

V ′
√
ln 42√

V ′
+ 4

2√c
2

(
1 − erf

(√
ln 42√

V ′

)))
<

√
2623
<

.

�

We now show Thm. 5.4.

Theorem 5.4. Let 3 ≥ blog2 (vd(�) − 2)c + 1 or 3 = 3 if � is undirected and there is at most one
SP between any pair of vertices in � .

R< (rk) ≤

√√
2883V ln 43√

V

<
(17)
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Furthermore, for some universal constant � < 262, it holds that

R< (rk) ≤
√

�3

<
.

Proof. The thesis follows from the fact that 3 is an upper bound to the VC-dimension [68]
([63, Def. 6.5]) of the BC estimation task on � using the rk estimator, as shown by Riondato and
Kornaropoulos [60, Thm. 2], and then application of Lemma A.4. �

A.2 Additional Experimental Results
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Fig. 15. Error bound Y decomposition.
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Table 5. Progressive sampling results — ca-AstroPh

method Ȳ \ Y Y/Ȳ prev. work Y < iter max. iters

ab

0.010
1.25 0.009324 0.932397 0.022913 15415 7 34
1.50 0.009150 0.915035 0.022549 14985 4 19
2.00 0.007464 0.746441 0.018910 21632 3 11

0.015
1.25 0.013551 0.903433 0.031203 8122 6 32
1.50 0.011671 0.778053 0.027734 9963 4 18
2.00 0.014268 0.951207 0.033064 7232 2 11

0.020
1.25 0.018814 0.940710 0.041593 4860 5 31
1.50 0.018265 0.913230 0.041506 4941 3 17
2.00 0.017323 0.866135 0.039001 5344 2 10

bp

0.010
1.25 0.009410 0.941016 0.028464 7892 4 34
1.50 0.009873 0.987296 0.030985 6660 2 19
2.00 0.007400 0.740044 0.024314 10816 2 11

0.015
1.25 0.014326 0.955040 0.039220 4157 3 32
1.50 0.013479 0.898573 0.038001 4428 2 18
2.00 0.009427 0.628478 0.029735 7232 2 11

0.020
1.25 0.018067 0.903335 0.045343 3110 3 31
1.50 0.016362 0.818105 0.044059 3294 2 17
2.00 0.019516 0.975815 0.048919 2672 1 10

rk

0.010
1.25 0.009546 0.954649 0.019467 19269 8 34
1.50 0.008697 0.869663 0.018024 22478 5 19
2.00 0.008940 0.894019 0.018373 21632 3 11

0.015
1.25 0.014365 0.957660 0.026819 10153 7 32
1.50 0.014069 0.937913 0.027073 9963 4 18
2.00 0.011266 0.751060 0.022469 14464 3 11

0.020
1.25 0.019257 0.962830 0.034671 6075 6 31
1.50 0.017255 0.862730 0.031388 7412 4 17
2.00 0.013454 0.672715 0.026139 10688 3 10

Table 6. Progressive sampling results — cit-HepPh

method Ȳ \ Y Y/Ȳ prev. work Y < iter max. iters

ab

0.010
1.25 0.009218 0.921844 0.021877 15415 7 34
1.50 0.009557 0.955690 0.022411 14985 4 19
2.00 0.007810 0.780952 0.018986 21632 3 11

0.015
1.25 0.014077 0.938433 0.032104 8122 6 32
1.50 0.012200 0.813347 0.027622 9963 4 18
2.00 0.009838 0.655855 0.022974 14464 3 11

0.020
1.25 0.018906 0.945305 0.039917 4860 5 31
1.50 0.018704 0.935190 0.039879 4941 3 17
2.00 0.017789 0.889430 0.038128 5344 2 10

bp

0.010
1.25 0.008746 0.874628 0.029187 7892 4 34
1.50 0.009898 0.989796 0.031772 6660 2 19
2.00 0.007345 0.734479 0.024931 10816 2 11

0.015
1.25 0.014297 0.953160 0.040215 4157 3 32
1.50 0.013186 0.879067 0.038965 4428 2 18
2.00 0.009558 0.637214 0.030489 7232 2 11

0.020
1.25 0.017654 0.882680 0.046494 3110 3 31
1.50 0.016563 0.828155 0.045177 3294 2 17
2.00 0.019113 0.955665 0.050160 2672 1 10

rk

0.010
1.25 0.008886 0.888604 0.017412 24087 9 34
1.50 0.009050 0.905042 0.018024 22478 5 19
2.00 0.009360 0.935954 0.018373 21632 3 11

0.015
1.25 0.014637 0.975767 0.026819 10153 7 32
1.50 0.014955 0.996987 0.027073 9963 4 18
2.00 0.011968 0.797893 0.022469 14464 3 11

0.020
1.25 0.018073 0.903650 0.031010 7594 7 31
1.50 0.017934 0.896710 0.031388 7412 4 17
2.00 0.014027 0.701360 0.026139 10688 3 10
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Table 7. Progressive sampling results — p2p-Gnutella31

method Ȳ \ Y Y/Ȳ prev. work Y < iter max. iters

ab

0.010
1.25 0.009333 0.933297 0.025424 6313 3 34
1.50 0.008584 0.858424 0.023901 6660 2 19
2.00 0.006188 0.618843 0.018545 11072 2 12

0.015
1.25 0.012963 0.864233 0.033321 4219 3 33
1.50 0.012040 0.802693 0.030759 4428 2 18
2.00 0.013918 0.927880 0.034465 3616 1 11

0.020
1.25 0.019034 0.951725 0.044553 2488 2 31
1.50 0.019927 0.996345 0.044832 2220 1 18
2.00 0.017588 0.879400 0.041052 2704 1 11

bp

0.010
1.25 0.008567 0.856684 0.041685 4040 1 34
1.50 0.007895 0.789483 0.039763 4440 1 19
2.00 0.006707 0.670652 0.035610 5536 1 12

0.015
1.25 0.012334 0.822273 0.050990 2700 1 33
1.50 0.011491 0.766040 0.048765 2952 1 18
2.00 0.009662 0.644145 0.044061 3616 1 11

0.020
1.25 0.016283 0.814150 0.059394 1990 1 31
1.50 0.014958 0.747885 0.056233 2220 1 18
2.00 0.012737 0.636860 0.050952 2704 1 11

rk

0.010
1.25 0.008745 0.874528 0.032435 7892 4 34
1.50 0.009620 0.962005 0.035308 6660 2 19
2.00 0.006853 0.685274 0.027384 11072 2 12

0.015
1.25 0.014561 0.970767 0.044361 4219 3 33
1.50 0.013689 0.912627 0.043301 4428 2 18
2.00 0.014963 0.997527 0.047917 3616 1 11

0.020
1.25 0.016653 0.832630 0.051669 3110 3 31
1.50 0.016694 0.834680 0.049933 3330 2 18
2.00 0.019183 0.959160 0.055412 2704 1 11

Table 8. Progressive sampling results — soc-Epinions1

method Ȳ \ Y Y/Ȳ prev. work Y < iter max. iters

ab

0.010
1.25 0.009474 0.947417 0.023600 12332 6 34
1.50 0.008431 0.843106 0.021566 14985 4 19
2.00 0.006609 0.660918 0.017381 21632 3 11

0.015
1.25 0.014307 0.953793 0.032939 6497 5 32
1.50 0.014034 0.935607 0.032870 6642 3 18
2.00 0.012931 0.862087 0.031322 7232 2 11

0.020
1.25 0.019930 0.996515 0.043657 3888 4 31
1.50 0.016890 0.844495 0.038935 4941 3 17
2.00 0.016049 0.802455 0.036733 5344 2 10

bp

0.010
1.25 0.009999 0.999866 0.037539 5050 2 34
1.50 0.007731 0.773050 0.032688 6660 2 19
2.00 0.009098 0.909849 0.036275 5408 1 11

0.015
1.25 0.013671 0.911420 0.046263 3325 2 32
1.50 0.014318 0.954533 0.049099 2952 1 18
2.00 0.012499 0.833273 0.044362 3616 1 11

0.020
1.25 0.019747 0.987325 0.059800 1990 1 31
1.50 0.018290 0.914500 0.056926 2196 1 17
2.00 0.015038 0.751900 0.051607 2672 1 10

rk

0.010
1.25 0.009478 0.947762 0.021765 15415 7 34
1.50 0.009691 0.969120 0.022076 14985 4 19
2.00 0.007794 0.779378 0.018373 21632 3 11

0.015
1.25 0.013991 0.932747 0.029985 8122 6 32
1.50 0.012796 0.853073 0.027073 9963 4 18
2.00 0.009877 0.658449 0.022469 14464 3 11

0.020
1.25 0.017457 0.872855 0.034671 6075 6 31
1.50 0.019446 0.972285 0.038444 4941 3 17
2.00 0.019213 0.960655 0.036966 5344 2 10
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Table 9. Progressive sampling results — loc-gowalla

method Ȳ \ Y Y/Ȳ prev. work Y < iter max. iters

ab

0.010
1.25 0.009087 0.908739 0.019617 114863.0 16.0 34.0
1.50 0.008933 0.893260 0.019703 113796.0 9.0 19.0
2.00 0.007008 0.700752 0.015891 173056.0 6.0 11.0

0.015
1.25 0.013957 0.930487 0.030495 48419.0 14.0 32.0
1.50 0.013525 0.901673 0.029869 50441.0 8.0 18.0
2.00 0.012176 0.811740 0.027877 57856.0 5.0 11.0

0.020
1.25 0.019917 0.995825 0.044654 23179.0 12.0 31.0
1.50 0.016183 0.809135 0.035002 37524.0 8.0 17.0
2.00 0.014604 0.730200 0.032514 42752.0 5.0 10.0

bp

0.010
1.25 0.009655 0.965488 0.011362 58809.0 13.0 34.0
1.50 0.008327 0.832730 0.010004 75864.0 8.0 19.0
2.00 0.007665 0.766471 0.009367 86528.0 5.0 11.0

0.015
1.25 0.013636 0.909073 0.015653 30988.0 12.0 32.0
1.50 0.012854 0.856933 0.015026 33627.0 7.0 18.0
2.00 0.013651 0.910073 0.016200 28928.0 4.0 11.0

0.020
1.25 0.018267 0.913350 0.020235 18543.0 11.0 31.0
1.50 0.019853 0.992660 0.021337 16677.0 6.0 17.0
2.00 0.016437 0.821860 0.018846 21376.0 4.0 10.0

rk

0.010
1.25 0.009830 0.982982 0.007973 114863.0 16.0 34.0
1.50 0.009814 0.981435 0.008011 113796.0 9.0 19.0
2.00 0.007852 0.785161 0.006496 173056.0 6.0 11.0

0.015
1.25 0.013739 0.915927 0.010984 60524.0 15.0 32.0
1.50 0.012344 0.822907 0.009824 75662.0 9.0 18.0
2.00 0.013880 0.925333 0.011235 57856.0 5.0 11.0

0.020
1.25 0.018442 0.922120 0.014200 36218.0 14.0 31.0
1.50 0.017665 0.883255 0.013950 37524.0 8.0 17.0
2.00 0.016198 0.809875 0.013069 42752.0 5.0 10.0

Table 10. Progressive sampling results — com-youtube

method Ȳ \ Y Y/Ȳ prev. work Y < iter max. iters

ab

0.010
1.25 0.009022 0.902180 0.022163 73512 14 34
1.50 0.008594 0.859402 0.021761 75864 8 19
2.00 0.007917 0.791696 0.020418 86528 5 11

0.015
1.25 0.014309 0.953900 0.034785 30988 12 32
1.50 0.013453 0.896880 0.033310 33627 7 18
2.00 0.014783 0.985513 0.036112 28928 4 11

0.020
1.25 0.018689 0.934440 0.044999 18543 11 31
1.50 0.016518 0.825900 0.038838 25016 7 17
2.00 0.017062 0.853090 0.042035 21376 4 10

bp

0.010
1.25 0.009515 0.951468 0.015000 37637 11 34
1.50 0.008287 0.828735 0.012940 50576 7 19
2.00 0.008758 0.875805 0.013991 43264 4 11

0.015
1.25 0.014222 0.948147 0.020665 19832 10 32
1.50 0.013143 0.876173 0.019436 22418 6 18
2.00 0.011082 0.738820 0.017110 28928 4 11

0.020
1.25 0.018312 0.915575 0.026714 11867 9 31
1.50 0.018539 0.926970 0.027599 11118 5 17
2.00 0.018664 0.933180 0.028149 10688 3 10

rk

0.010
1.25 0.009706 0.970636 0.008915 91890 15 34
1.50 0.008430 0.843022 0.008011 113796 9 19
2.00 0.009328 0.932777 0.009187 86528 5 11

0.015
1.25 0.014879 0.991907 0.013730 38735 13 32
1.50 0.012820 0.854673 0.012032 50441 8 18
2.00 0.012079 0.805240 0.011235 57856 5 11

0.020
1.25 0.019997 0.999860 0.017750 23179 12 31
1.50 0.019511 0.975530 0.017086 25016 7 17
2.00 0.013911 0.695550 0.013069 42752 5 10
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Table 11. Progressive sampling results — as-skitter

method Ȳ \ Y Y/Ȳ prev. work Y < iter max. iters

ab

0.010
1.25 0.009987 0.998724 0.025307 15415.0 7.0 34.0
1.50 0.008194 0.819447 0.021279 22478.0 5.0 19.0
2.00 0.008265 0.826487 0.021189 22144.0 3.0 12.0

0.015
1.25 0.014813 0.987507 0.034859 8242.0 6.0 33.0
1.50 0.012863 0.857547 0.031232 9963.0 4.0 18.0
2.00 0.010234 0.682280 0.025580 14464.0 3.0 11.0

0.020
1.25 0.018048 0.902410 0.042448 6075.0 6.0 31.0
1.50 0.015931 0.796550 0.037128 7493.0 4.0 18.0
2.00 0.019077 0.953865 0.044658 5408.0 2.0 11.0

bp

0.010
1.25 0.009325 0.932549 0.029645 9865.0 5.0 34.0
1.50 0.009262 0.926167 0.029458 9990.0 3.0 19.0
2.00 0.008573 0.857300 0.027982 11072.0 2.0 12.0

0.015
1.25 0.014085 0.938980 0.040544 5274.0 4.0 33.0
1.50 0.011910 0.794033 0.036128 6642.0 3.0 18.0
2.00 0.011385 0.759000 0.034623 7232.0 2.0 11.0

0.020
1.25 0.017380 0.869010 0.047220 3888.0 4.0 31.0
1.50 0.019055 0.952775 0.051024 3330.0 2.0 18.0
2.00 0.013462 0.673095 0.040038 5408.0 2.0 11.0

rk

0.010
1.25 0.009067 0.906748 0.018566 24087.0 9.0 34.0
1.50 0.009565 0.956499 0.019219 22478.0 5.0 19.0
2.00 0.009683 0.968274 0.019363 22144.0 3.0 12.0

0.015
1.25 0.013275 0.884973 0.025390 12879.0 8.0 33.0
1.50 0.014972 0.998107 0.028868 9963.0 4.0 18.0
2.00 0.012438 0.829220 0.023959 14464.0 3.0 11.0

0.020
1.25 0.018483 0.924155 0.033065 7594.0 7.0 31.0
1.50 0.018660 0.932985 0.033287 7493.0 4.0 18.0
2.00 0.014584 0.729220 0.027706 10816.0 3.0 11.0
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